An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction

被引:829
作者
Attia, Zachi, I [1 ]
Noseworthy, Peter A. [1 ]
Lopez-Jimenez, Francisco [1 ]
Asirvatham, Samuel J. [1 ]
Deshmukh, Abhishek J. [1 ]
Gersh, Bernard J. [1 ]
Carter, Rickey E. [5 ]
Yao, Xiaoxi [2 ]
Rabinstein, Alejandro A. [3 ]
Erickson, Brad J. [4 ]
Kapa, Suraj [1 ]
Friedman, Paul A. [1 ]
机构
[1] Mayo Clin, Dept Cardiovasc Med, Rochester, MN 55905 USA
[2] Mayo Clin, Dept Hlth Sci Res, Rochester, MN 55905 USA
[3] Mayo Clin, Dept Neurol, Rochester, MN 55905 USA
[4] Mayo Clin, Dept Radiol, Rochester, MN 55905 USA
[5] Mayo Clin, Dept Hlth Sci Res, Jacksonville, FL 32224 USA
关键词
INTERATRIAL BLOCK; ISCHEMIC-STROKE; DYSFUNCTION; PREVALENCE; GUIDELINE; APPENDAGE; WARFARIN; ASPIRIN; RISK;
D O I
10.1016/S0140-6736(19)31721-0
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Atrial fibrillation is frequently asymptomatic and thus underdetected but is associated with stroke, heart failure, and death. Existing screening methods require prolonged monitoring and are limited by cost and low yield. We aimed to develop a rapid, inexpensive, point-of-care means of identifying patients with atrial fibrillation using machine learning. Methods We developed an artificial intelligence (AI)-enabled electrocardiograph (ECG) using a convolutional neural network to detect the electrocardiographic signature of atrial fibrillation present during normal sinus rhythm using standard 10-second, 12-lead ECGs. We included all patients aged 18 years or older with at least one digital, normal sinus rhythm, standard 10-second, 12-lead ECG acquired in the supine position at the Mayo Clinic ECG laboratory between Dec 31, 1993, and July 21, 2017, with rhythm labels validated by trained personnel under cardiologist supervision. We classified patients with at least one ECG with a rhythm of atrial fibrillation or atrial flutter as positive for atrial fibrillation. We allocated ECGs to the training, internal validation, and testing datasets in a 7: 1: 2 ratio. We calculated the area under the curve (AUC) of the receiver operatoring characteristic curve for the internal validation dataset to select a probability threshold, which we applied to the testing dataset. We evaluated model performance on the testing dataset by calculating the AUC and the accuracy, sensitivity, specificity, and F1 score with two-sided 95% CIs. Findings We included 180 922 patients with 649 931 normal sinus rhythm ECGs for analysis: 454 789 ECGs recorded from 126 526 patients in the training dataset, 64 340 ECGs from 18 116 patients in the internal validation dataset, and 130 802 ECGs from 36 280 patients in the testing dataset. 3051 (8.4%) patients in the testing dataset had verified atrial fibrillation before the normal sinus rhythm ECG tested by the model. A single AI-enabled ECG identified atrial fibrillation with an AUC of 0.87 (95% CI 0.86-0.88), sensitivity of 79.0% (77.5-80.4), specificity of 79.5% (79.0-79.9), F1 score of 39.2% (38.1-40.3), and overall accuracy of 79.4% (79.0-79.9). Including all ECGs acquired during the first month of each patient's window of interest (ie, the study start date or 31 days before the first recorded atrial fibrillation ECG) increased the AUC to 0.90 (0.90-0.91), sensitivity to 82.3% (80.9-83.6), specificity to 83.4% (83.0-83.8), F1 score to 45.4% (44.2-46.5), and overall accuracy to 83.3% (83.0-83.7). Interpretation An AI-enabled ECG acquired during normal sinus rhythm permits identification at point of care of individuals with atrial fibrillation. Copyright (c) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:861 / 867
页数:7
相关论文
共 30 条
  • [1] [Anonymous], 2015, ARXIV PREPRINT ARXIV
  • [2] [Anonymous], ANN TRANSL MED
  • [3] Bayes syndrome and acute cardioembolic ischemic stroke
    Arboix, Adria
    Marti, Lucia
    Dorison, Sebastien
    Jose Sanchez, Maria
    [J]. WORLD JOURNAL OF CLINICAL CASES, 2017, 5 (03) : 93 - 101
  • [4] Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram
    Attia, Zachi I.
    Kapa, Suraj
    Lopez-Jimenez, Francisco
    McKie, Paul M.
    Ladewig, Dorothy J.
    Satam, Gaurav
    Pellikka, Patricia A.
    Enriquez-Sarano, Maurice
    Noseworthy, Peter A.
    Munger, Thomas M.
    Asirvatham, Samuel J.
    Scott, Christopher G.
    Carter, Rickey E.
    Friedman, Paul A.
    [J]. NATURE MEDICINE, 2019, 25 (01) : 70 - +
  • [5] Left atrial appendage function assessed by transesophageal echocardiography before and on the day after elective cardioversion for nonvalvular atrial fibrillation
    Bellotti, P
    Spirito, P
    Lupi, G
    Vecchio, C
    [J]. AMERICAN JOURNAL OF CARDIOLOGY, 1998, 81 (10) : 1199 - +
  • [6] Diagnostic ability of B-type natriuretic peptide and impedance cardiography: Testing to identify left ventricular dysfunction in hypertensive patients
    Bhalla, V
    Isakson, S
    Bhalla, MA
    Lin, JP
    Clopton, P
    Gardetto, N
    Maisel, AS
    [J]. AMERICAN JOURNAL OF HYPERTENSION, 2005, 18 (02) : 73S - 81S
  • [7] Prediction of the lymph node status in patients with intrahepatic cholangiocarcinoma: analysis of 320 surgical cases
    Chen, Yi-Xing
    Zeng, Zhao-Chong
    Tang, Zhao-You
    Fan, Jia
    Zhou, Jian
    Jiang, Wei
    Zeng, Meng-Su
    Tan, Yun-Shan
    [J]. FRONTIERS IN ONCOLOGY, 2011, 1 : 1 - 6
  • [8] Comparison of warfarin and aspirin for symptomatic intracranial arterial stenosis
    Chimowitz, MI
    Lynn, MJ
    Howlett-Smith, H
    Stern, BJ
    Hertzberg, VS
    Frankel, MR
    Levine, SR
    Chaturvedi, S
    Kasner, SE
    Benesch, CG
    Sila, CA
    Jovin, TG
    Romano, JG
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2005, 352 (13) : 1305 - 1316
  • [9] Atrial Fibrillation in Patients with Cryptogenic Stroke
    Gladstone, David J.
    Spring, Melanie
    Dorian, Paul
    Panzov, Val
    Thorpe, Kevin E.
    Hall, Judith
    Vaid, Haris
    O'Donnell, Martin
    Laupacis, Andreas
    Cote, Robert
    Sharma, Mukul
    Blakely, John A.
    Shuaib, Ashfaq
    Hachinski, Vladimir
    Coutts, Shelagh B.
    Sahlas, Demetrios J.
    Teal, Phil
    Yip, Samuel
    Spence, J. David
    Buck, Brian
    Verreault, Steve
    Casaubon, Leanne K.
    Penn, Andrew
    Selchen, Daniel
    Jin, Albert
    Howse, David
    Mehdiratta, Manu
    Boyle, Karl
    Aviv, Richard
    Kapral, Moira K.
    Mamdani, Muhammad
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2014, 370 (26) : 2467 - 2477
  • [10] Rivaroxaban for Stroke Prevention after Embolic Stroke of Undetermined Source
    Hart, R. G.
    Sharma, M.
    Mundl, H.
    Kasner, S. E.
    Bangdiwala, S. I.
    Berkowitz, S. D.
    Swaminathan, B.
    Lavados, P.
    Wang, Y.
    Wang, Y.
    Davalos, A.
    Shamalov, N.
    Mikulik, R.
    Cunha, L.
    Lindgren, A.
    Arauz, A.
    Lang, W.
    Czlonkowska, A.
    Eckstein, J.
    Gagliardi, R. J.
    Amarenco, P.
    Ameriso, S. F.
    Tatlisumak, T.
    Veltkamp, R.
    Hankey, G. J.
    Toni, D.
    Bereczki, D.
    Uchiyama, S.
    Ntaios, G.
    Yoon, B. -W.
    Brouns, R.
    Endres, M.
    Muir, K. W.
    Bornstein, N.
    Ozturk, S.
    O'Donnell, M. J.
    Basson, M. M. De Vries
    Pare, G.
    Pater, C.
    Kirsch, B.
    Sheridan, P.
    Peters, G.
    Weitz, J. I.
    Peacock, W. F.
    Shoamanesh, A.
    Benavente, O. R.
    Joyner, C.
    Themeles, E.
    Connolly, S. J.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2018, 378 (23) : 2191 - 2201