Nonlocal Coupled System for (k, φ)-Hilfer Fractional Differential Equations

被引:8
作者
Samadi, Ayub [1 ]
Ntouyas, Sotiris K. [2 ]
Tariboon, Jessada [3 ]
机构
[1] Islamic Azad Univ, Dept Math, Miyaneh Branch, Miyaneh 5315836511, Iran
[2] Univ Ioannina, Dept Math, Ioannina 45110, Greece
[3] King Mongkuts Univ Technol North Bangkok, Fac Appl Sci, Intelligent & Nonlinear Dynam Innovat Res Ctr, Dept Math, Bangkok 10800, Thailand
关键词
(k; phi)-Hilfer fractional derivative; Riemann-Liouville fractional derivative; Caputo fractional derivative; existence; uniqueness; fixed-point theorems;
D O I
10.3390/fractalfract6050234
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study a coupled system consisting of (k, phi)-Hilfer fractional differential equations of the order (1,2], supplemented with nonlocal coupled multi-point boundary conditions. The existence and uniqueness of the results are established via Banach's contraction mapping principle, the Leray-Schauder alternative and Krasnosel'skir's fixed-point theorem. Numerical examples are constructed to illustrate the obtained results.
引用
收藏
页数:17
相关论文
共 26 条
[1]   Some generalized Riemann-Liouville k-fractional integral inequalities [J].
Agarwal, Praveen ;
Tariboon, Jessada ;
Ntouyas, Sotiris K. .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
[2]  
Ahmad B., 2017, HADAMARD TYPE FRACTI
[3]   RIEMANN-STIELTJES INTEGRAL BOUNDARY VALUE PROBLEMS INVOLVING MIXED RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL DERIVATIVES [J].
Ahmad, Bashir ;
Alruwaily, Ymnah ;
Alsaedi, Ahmed ;
Ntouyas, Sotiris K. .
JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2021,
[4]   A Caputo fractional derivative of a function with respect to another function [J].
Almeida, Ricardo .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 44 :460-481
[5]   Study of generalized type K-fractional derivatives [J].
Azam, M. K. ;
Farid, G. ;
Rehman, M. A. .
ADVANCES IN DIFFERENCE EQUATIONS, 2017,
[6]  
Deimling K., 1985, NONLINEAR FUNCTIONAL, DOI [DOI 10.1007/978-3-662-00547-7, DOI 10.1007/s00285-013-0689-z]
[7]  
Diaz R., 2007, DIVULGACIONES MATEMA, V15, P179
[8]   Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type [J].
Diethelm, Kai .
ANALYSIS OF FRACTIONAL DIFFERENTIAL EQUATIONS: AN APPLICATION-ORIENTED EXPOSITION USING DIFFERENTIAL OPERATORS OF CAPUTO TYPE, 2010, 2004 :3-+
[9]  
Dorrego G.A., 2015, APPL MATH SCI, V9, P481, DOI [10.12988/ams.2015.411893, DOI 10.12988/AMS.2015.411893]
[10]  
Farid G., 2017, NONLINEAR ANAL FORUM, V22, P17