Single-cell-type quantitative proteomic and ionomic analysis of epidermal bladder cells from the halophyte model plant Mesembryanthemum crystallinum to identify salt-responsive proteins

被引:57
作者
Barkla, Bronwyn J. [1 ]
Vera-Estrella, Rosario [2 ]
Raymond, Carolyn [1 ]
机构
[1] So Cross Univ, Southern Cross Plant Sci, Lismore, NSW 2480, Australia
[2] Univ Nacl Autonoma Mexico, Inst Biotecnol, Cuernavaca 62191, Morelos, Mexico
关键词
Proteomics; Trichome; Salinity; Salt tolerance; Crassulacean acid metabolism (CAM); Ionomics; Chloride; Sodium; V-ATPase; Single cell-type; VACUOLAR H+-ATPASE; LABEL-FREE; SALINITY; TOLERANCE; TRANSPORT; EXPRESSION; STRESS; ACCUMULATION; METABOLOMICS; METABOLISM;
D O I
10.1186/s12870-016-0797-1
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: Epidermal bladder cells (EBC) are large single-celled, specialized, and modified trichomes found on the aerial parts of the halophyte Mesembryanthemum crystallinum. Recent development of a simple but high throughput technique to extract the contents from these cells has provided an opportunity to conduct detailed single-cell-type analyses of their molecular characteristics at high resolution to gain insight into the role of these cells in the salt tolerance of the plant. Results: In this study, we carry out large-scale complementary quantitative proteomic studies using both a label (DIGE) and label-free (GeLC-MS) approach to identify salt-responsive proteins in the EBC extract. Additionally we perform an ionomics analysis (ICP-MS) to follow changes in the amounts of 27 different elements. Using these methods, we were able to identify 54 proteins and nine elements that showed statistically significant changes in the EBC from salt-treated plants. GO enrichment analysis identified a large number of transport proteins but also proteins involved in photosynthesis, primary metabolism and Crassulacean acid metabolism (CAM). Validation of results by western blot, confocal microscopy and enzyme analysis helped to strengthen findings and further our understanding into the role of these specialized cells. As expected EBC accumulated large quantities of sodium, however, the most abundant element was chloride suggesting the sequestration of this ion into the EBC vacuole is just as important for salt tolerance. Conclusions: This single-cell type omics approach shows that epidermal bladder cells of M. crystallinum are metabolically active modified trichomes, with primary metabolism supporting cell growth, ion accumulation, compatible solute synthesis and CAM. Data are available via ProteomeXchange with identifier PXD004045.
引用
收藏
页数:16
相关论文
共 57 条
[1]   Growth and development of Mesembryanthemum crystallinum (Aizoaceae) [J].
Adams, P ;
Nelson, DE ;
Yamada, S ;
Chmara, W ;
Jensen, RG ;
Bohnert, HJ ;
Griffiths, H .
NEW PHYTOLOGIST, 1998, 138 (02) :171-190
[2]   Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum [J].
Agarie, Sakae ;
Shimoda, Toshifumi ;
Shimizu, Yumi ;
Baumann, Kathleen ;
Sunagawa, Haruki ;
Kondo, Ayumu ;
Ueno, Osamu ;
Nakahara, Teruhisa ;
Nose, Akihiro ;
Cushman, John C. .
JOURNAL OF EXPERIMENTAL BOTANY, 2007, 58 (08) :1957-1967
[3]   COMPARATIVE ULTRASTRUCTURE OF MICROHAIRS IN GRASSES [J].
AMARASINGHE, V ;
WATSON, L .
BOTANICAL JOURNAL OF THE LINNEAN SOCIETY, 1988, 98 (04) :303-319
[4]  
[Anonymous], 2014, GenStat for Windows
[5]   Na+/H+ exchange in the halophyte Mesembryanthemum crystallinum is associated with cellular sites of Na+ storage [J].
Barkla, BJ ;
Vera-Estrella, R ;
Camacho-Emiterio, J ;
Pantoja, O .
FUNCTIONAL PLANT BIOLOGY, 2002, 29 (09) :1017-1024
[6]   Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum [J].
Barkla, Bronwyn J. ;
Vera-Estrella, Rosario .
FRONTIERS IN PLANT SCIENCE, 2015, 6
[7]   Protein profiling of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum [J].
Barkla, Bronwyn J. ;
Vera-Estrella, Rosario ;
Pantoja, Omar .
PROTEOMICS, 2012, 12 (18) :2862-2865
[8]   Gene Ontology Annotations and Resources [J].
Blake, J. A. ;
Dolan, M. ;
Drabkin, H. ;
Hill, D. P. ;
Ni, Li ;
Sitnikov, D. ;
Bridges, S. ;
Burgess, S. ;
Buza, T. ;
McCarthy, F. ;
Peddinti, D. ;
Pillai, L. ;
Carbon, S. ;
Dietze, H. ;
Ireland, A. ;
Lewis, S. E. ;
Mungall, C. J. ;
Gaudet, P. ;
Chisholm, R. L. ;
Fey, P. ;
Kibbe, W. A. ;
Basu, S. ;
Siegele, D. A. ;
McIntosh, B. K. ;
Renfro, D. P. ;
Zweifel, A. E. ;
Hu, J. C. ;
Brown, N. H. ;
Tweedie, S. ;
Alam-Faruque, Y. ;
Apweiler, R. ;
Auchinchloss, A. ;
Axelsen, K. ;
Bely, B. ;
Blatter, M-C. ;
Bonilla, C. ;
Bougueleret, L. ;
Boutet, E. ;
Breuza, L. ;
Bridge, A. ;
Chan, W. M. ;
Chavali, G. ;
Coudert, E. ;
Dimmer, E. ;
Estreicher, A. ;
Famiglietti, L. ;
Feuermann, M. ;
Gos, A. ;
Gruaz-Gumowski, N. ;
Hieta, R. .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D530-D535
[9]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[10]  
Broadley M, 2010, MINERAL NUTR HIGHER, P191