Achieving high initial coulombic efficiency and low voltage dropping in Li-rich Mn-based cathode materials by Metal-Organic frameworks-derived coating

被引:42
作者
Huang, Chao [1 ,2 ]
Wang, Zhijie [3 ]
Fang, Zou-Qiang [1 ,2 ]
Zhao, Shi-Xi [1 ]
Ci, Li-jie [4 ]
机构
[1] Tsinghua Univ, Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
[2] Tsinghua Univ, Sch Mat Sci & Engn, Beijing 100084, Peoples R China
[3] Univ Wollongong, Inst Superconducting & Elect Mat, Australian Inst Innovat Mat, Wollongong, NSW 2522, Australia
[4] Harbin Inst Technol Shenzhen, Sch Mat Sci & Engn, State Key Lab Adv Welding & Joining, Shenzhen 518055, Peoples R China
关键词
Li-rich Mn-Based oxides; MOFs-self-assembly coating; High initial coulombic efficiency; Low voltage dropping; High-voltage electrodes; ELECTROCHEMICAL PERFORMANCE; LAYERED OXIDES; LITHIUM; STABILITY; SURFACE; ELECTRODES; DEPOSITION; EVOLUTION; CAPACITY; STRATEGY;
D O I
10.1016/j.jpowsour.2021.229967
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li-rich Mn-based oxides (LRMOs) are promising cathode materials for next-generation Li-ion batteries because of their high voltage, high capacity, and low cost. However, the low initial Coulombic efficiency (ICE), severe capacity fading and voltage dropping during cycling hinder their large-scale application of LRMOs. Hence, we propose a facile Metal-Organic Frameworks (MOF)-self-assembly coating strategy to modify LRMOs with CoxOy/C coating (LRMO@CoxOy/C). The CoxOy/C layer can alleviate the side-reaction between the electrolyte and cathode materials, and enhance both ion-diffusion and electrons-transportation speed throughout the surface of the electrode materials. In addition, the CoxOy/C layer suppresses the lattice oxygen release and improve structural stability of LRMOs during long-term cycling. Consequently, the LRMO@CoxOy/C cathode shows a high ICE of 91.5% and slow voltage dropping of only 2 mV/cycle at 0.2 C. After 300 cycles, it still delivers a high discharge capacity of 210.7 mAh.g(-1) at 0.5 C with a capacity retention of similar to 80%. This work provides a novel approach to achieve next-generation high-energy density cathode materials.
引用
收藏
页数:8
相关论文
共 45 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   High-Performance Li(Li0.18Ni0.15Co0.15Mn0.52)O2@Li4M5O12 Heterostructured Cathode Material Coated with a Lithium Borate Oxide Glass Layer [J].
Bian, Xiaofei ;
Fu, Qiang ;
Qiu, Hailong ;
Du, Fei ;
Gao, Yu ;
Zhang, Lijie ;
Zou, Bo ;
Chen, Gang ;
Wei, Yingjin .
CHEMISTRY OF MATERIALS, 2015, 27 (16) :5745-5754
[3]   Towards improved structural stability and electrochemical properties of a Li-rich material by a strategy of double gradient surface modification [J].
Ding, Xiang ;
Li, Yi-Xuan ;
Wang, Shuo ;
Dong, Jie-Min ;
Yasmin, Aqsa ;
Hu, Qiao ;
Wen, Zhao-Yin ;
Chen, Chun-Hua .
NANO ENERGY, 2019, 61 :411-419
[4]   An Ultra-Long-Life Lithium-Rich Li1.2Mn0.6Ni0.2O2 Cathode by Three-in-One Surface Modification for Lithium-Ion Batteries [J].
Ding, Xiaokai ;
Luo, Dong ;
Cui, Jiaxiang ;
Xie, Huixian ;
Ren, Qingqing ;
Lin, Zhan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (20) :7778-7782
[5]   High-Temperature Treatment of Li-Rich Cathode Materials with Ammonia: Improved Capacity and Mean Voltage Stability during Cycling [J].
Erickson, Evan M. ;
Sclar, Hadar ;
Schipper, Florian ;
Liu, Jing ;
Tian, Ruiyuan ;
Ghanty, Chandan ;
Burstein, Larisa ;
Leifer, Nicole ;
Grinblat, Judith ;
Talianker, Michael ;
Shin, Ji-Yong ;
Lampert, Jordan K. ;
Markovsky, Boris ;
Frenkel, Anatoly I. ;
Aurbach, Doron .
ADVANCED ENERGY MATERIALS, 2017, 7 (18)
[6]   Structure dependent electrochemical performance of Li-rich layered oxides in lithium-ion batteries [J].
Fu, Fang ;
Yao, Yuze ;
Wang, Haiyan ;
Xu, Gui-Liang ;
Amine, Khalil ;
Sun, Shi-Gang ;
Shao, Minhua .
NANO ENERGY, 2017, 35 :370-378
[7]   Electrochemical performance and thermal stability of Li1.18Co0.15Ni0.15Mn0.52O2 surface coated with the ionic conductor Li3VO4 [J].
Fu, Qiang ;
Du, Fei ;
Bian, Xiaofei ;
Wang, Yuhui ;
Yan, Xiao ;
Zhang, Yongquan ;
Zhu, Kai ;
Chen, Gang ;
Wang, Chunzhong ;
Wei, Yingjin .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (20) :7555-7562
[8]   Research on Electrochemical Properties and Fade Mechanisms of Li-rich Cathode Materials at Low-temperature [J].
Guo, Shuang-Tao ;
Zhao, Shi-Xi ;
Bi, Kun ;
Deng, Yu-Feng ;
Xiong, Kai ;
Nan, Ce-Wen .
ELECTROCHIMICA ACTA, 2016, 222 :1733-1740
[9]   Eliminating Transition Metal Migration and Anionic Redox to Understand Voltage Hysteresis of Lithium-Rich Layered Oxides [J].
Han, Miao ;
Jiao, Junyu ;
Liu, Zepeng ;
Shen, Xi ;
Zhang, Qinghua ;
Lin, Hong-Ji ;
Chen, Chien-Te ;
Kong, Qingyu ;
Pang, Wei Kong ;
Guo, Zaiping ;
Yu, Richeng ;
Gu, Lin ;
Hu, Zhiwei ;
Wang, Zhaoxiang ;
Chen, Liquan .
ADVANCED ENERGY MATERIALS, 2020, 10 (08)
[10]   Nitrogen-rich MOF derived porous Co3O4/N-C composites with superior performance in lithium-ion batteries [J].
Han, Xiao ;
Chen, Wen-Miao ;
Han, Xiguang ;
Tan, Yuan-Zhi ;
Sun, Di .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (34) :13040-13045