On the Built-in Restrictions in Linear Mixed Models, with Application to Smoothing Spline Analysis of Variance

被引:2
|
作者
Brumback, Babette A. [1 ]
机构
[1] Univ Florida, Dept Epidemiol & Biostat, Coll Publ Hlth & Hlth Profess, Gainesville, FL 32611 USA
关键词
BLUP; Prediction error variance; REML; Robustly predictable linear combination; Shrinkage; CONSTRAINTS; POPULATION; PREDICTION; REGRESSION; ANOVA; BAYES;
D O I
10.1080/03610920902755847
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The best linear unbiased predictor (BLUP) of the random parameter in a linear mixed model satisfies a linear constraint, which has been previously termed a built-in restriction. In other literature, constraints on the random parameter itself have been introduced into the modeling framework. The present article has two goals. First, it explores the idea of imposing the built-in restrictions on the BLUP as constraints on the random parameter. Second, it investigates the built-in restrictions satisfied by certain smoothing spline analysis of variance (SSANOVA) estimators, and compares these restrictions to arguably more natural side conditions on the ANOVA decomposition.
引用
收藏
页码:579 / 591
页数:13
相关论文
共 50 条
  • [41] Application of linear mixed models for multiple harvest/site trial analyses in perennial plant breeding
    Saulo F. S. Chaves
    Jeniffer S. P. C. Evangelista
    Rodrigo S. Alves
    Filipe M. Ferreira
    Luiz A. S. Dias
    Rafael M. Alves
    Kaio O. G. Dias
    Leonardo L. Bhering
    Tree Genetics & Genomes, 2022, 18
  • [42] Wavelet-based functional linear mixed models: an application to measurement error-corrected distributed lag models
    Malloy, Elizabeth J.
    Morris, Jeffrey S.
    Adar, Sara D.
    Suh, Helen
    Gold, Diane R.
    Coull, Brent A.
    BIOSTATISTICS, 2010, 11 (03) : 432 - 452
  • [43] Dissecting Complex Traits Using Omics Data: A Review on the Linear Mixed Models and Their Application in GWAS
    Alamin, Md.
    Sultana, Most. Humaira
    Lou, Xiangyang
    Jin, Wenfei
    Xu, Haiming
    PLANTS-BASEL, 2022, 11 (23):
  • [44] An update on modeling dose-response relationships: Accounting for correlated data structure and heterogeneous error variance in linear and nonlinear mixed models
    Goncalves, M. A. D.
    Bello, N. M.
    Dritz, S. S.
    Tokach, M. D.
    DeRouchey, J. M.
    Woodworth, J. C.
    Goodband, R. D.
    JOURNAL OF ANIMAL SCIENCE, 2016, 94 (05) : 1940 - 1950
  • [45] Kernel mixed and Kernel stochastic restricted ridge predictions in the partially linear mixed measurement error models: an application to COVID-19
    Kuran, Ozge
    Yalaz, Secil
    JOURNAL OF APPLIED STATISTICS, 2024, 51 (10) : 1894 - 1918
  • [46] Convergence analysis of the block Gibbs sampler for Bayesian probit linear mixed models with improper priors
    Wang, Xin
    Roy, Vivekananda
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02): : 4412 - 4439
  • [47] Analysis of repeated measures data through mixed models: An application in Theobroma grandiflorum breeding
    Chaves, Saulo F. S.
    Alves, Rodrigo S. S.
    Dias, Luiz A. S.
    Alves, Rafael M. M.
    Dias, Kaio O. G.
    Evangelista, Jeniffer S. P. C.
    CROP SCIENCE, 2023, 63 (04) : 2131 - 2144
  • [48] l1-penalized linear mixed-effects models for high dimensional data with application to BCI
    Fazli, Siamac
    Danoczy, Marton
    Schelldorfer, Juerg
    Mueller, Klaus-Robert
    NEUROIMAGE, 2011, 56 (04) : 2100 - 2108
  • [49] A SAEM algorithm for fused lasso penalized Non Linear Mixed Effect Models: Application to group comparison in pharmacokinetics
    Oilier, Edouard
    Samson, Adeline
    Delavenne, Xavier
    Viallon, Vivian
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 95 : 207 - 221
  • [50] Bivariate Random Effects Meta-Analysis of Diagnostic Studies Using Generalized Linear Mixed Models
    Chu, Haitao
    Guo, Hongfei
    Zhou, Yijie
    MEDICAL DECISION MAKING, 2010, 30 (04) : 499 - 508