On the Built-in Restrictions in Linear Mixed Models, with Application to Smoothing Spline Analysis of Variance

被引:2
|
作者
Brumback, Babette A. [1 ]
机构
[1] Univ Florida, Dept Epidemiol & Biostat, Coll Publ Hlth & Hlth Profess, Gainesville, FL 32611 USA
关键词
BLUP; Prediction error variance; REML; Robustly predictable linear combination; Shrinkage; CONSTRAINTS; POPULATION; PREDICTION; REGRESSION; ANOVA; BAYES;
D O I
10.1080/03610920902755847
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The best linear unbiased predictor (BLUP) of the random parameter in a linear mixed model satisfies a linear constraint, which has been previously termed a built-in restriction. In other literature, constraints on the random parameter itself have been introduced into the modeling framework. The present article has two goals. First, it explores the idea of imposing the built-in restrictions on the BLUP as constraints on the random parameter. Second, it investigates the built-in restrictions satisfied by certain smoothing spline analysis of variance (SSANOVA) estimators, and compares these restrictions to arguably more natural side conditions on the ANOVA decomposition.
引用
收藏
页码:579 / 591
页数:13
相关论文
共 50 条
  • [21] Average information REML: An efficient algorithm for variance parameter estimation in linear mixed models
    Gilmour, AR
    Thompson, R
    Cullis, BR
    BIOMETRICS, 1995, 51 (04) : 1440 - 1450
  • [22] Optimum smoothing parameter selection for penalized least squares in form of linear mixed effect models
    Aydin, Dursun
    Memmedli, Memmedaga
    OPTIMIZATION, 2012, 61 (04) : 459 - 476
  • [23] Developments from analysis of variance through to generalized linear models and beyond
    Payne, R. W.
    ANNALS OF APPLIED BIOLOGY, 2014, 164 (01) : 11 - 17
  • [24] Application of linear mixed models for multiple harvest/site trial analyses in perennial plant breeding
    Chaves, Saulo F. S.
    Evangelista, Jeniffer S. P. C.
    Alves, Rodrigo S.
    Ferreira, Filipe M.
    Dias, Luiz A. S.
    Alves, Rafael M.
    Dias, Kaio O. G.
    Bhering, Leonardo L.
    TREE GENETICS & GENOMES, 2022, 18 (06)
  • [25] Sparse Estimation Strategies in Linear Mixed Effect Models for High-Dimensional Data Application
    Opoku, Eugene A.
    Ahmed, Syed Ejaz
    Nathoo, Farouk S.
    ENTROPY, 2021, 23 (10)
  • [26] Information based model selection criteria for generalized linear mixed models with unknown variance component parameters
    Yu, Dalei
    Zhang, Xinyu
    Yau, Kelvin K. W.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 116 : 245 - 262
  • [27] Accessible analysis of longitudinal data with linear mixed effects models
    Murphy, Jessica, I
    Weaver, Nicholas E.
    Hendricks, Audrey E.
    DISEASE MODELS & MECHANISMS, 2022, 15 (05)
  • [28] Practical likelihood analysis for spatial generalized linear mixed models
    Bonat, Wagner Hugo
    Ribeiro, Paulo Justiniano, Jr.
    ENVIRONMETRICS, 2016, 27 (02) : 83 - 89
  • [29] Linear Mixed Models with Endogenous Covariates: Modeling Sequential Treatment Effects with Application to a Mobile Health Study
    Qian, Tianchen
    Klasnja, Predrag
    Murphy, Susan A.
    STATISTICAL SCIENCE, 2020, 35 (03) : 375 - 390
  • [30] Estimation in multivariate t linear mixed models for longitudinal data with multiple outputs: Application to PBCseq data analysis
    Taavoni, Mozhgan
    Arashi, Mohammad
    BIOMETRICAL JOURNAL, 2022, 64 (03) : 539 - 556