Nonexistence of global solutions for a time-fractional damped wave equation in a k-times halved space

被引:7
作者
Agarwal, Ravi P. [1 ,2 ]
Jleli, Mohamed [3 ]
Samet, Bessem [3 ]
机构
[1] Texas A&M Univ Kingvsille, Dept Math, Kingsville, TX 78363 USA
[2] Florida Inst Technol, Math, 150 West Univ Blvd, Melbourne, FL 32901 USA
[3] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
关键词
Nonexistence; Global solution; Time-fractional damped wave equation; k-times halved space; CRITICAL EXPONENT;
D O I
10.1016/j.camwa.2019.01.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the time-fractional damped wave equation (c)D(0)(alpha)u - Delta u + (c)D(0)(beta)u = vertical bar u vertical bar(p), t > 0, x is an element of D-k, where 1 < alpha < 2, 0 < beta < 1, D-c(0)sigma, sigma is an element of {alpha, beta}, is the left-sided Caputo fractional derivative of order sigma with respect to the variable time t,p > 1, and D-k , k is an element of {1, 2, ..., N}, is the k-times halved space given by D-k = {x = (x(1), x(2), ..., x(N)) is an element of R-N : x(i) > 0, i = 1, 2, ..., k}. Using the nonlinear capacity method, we prove that the problem admits no global weak solutions with suitable initial data when 1 < p < 1 + 2 beta/(N+k)beta+2(1-beta) . (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1608 / 1620
页数:13
相关论文
共 24 条
[1]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[2]  
Graham I., 2013, Direct and Inverse Problems in Wave Propagation and Applications, DOI [10.1515/9783110282283, DOI 10.1515/9783110282283]
[3]   NONEXISTENCE OF GLOBAL SOLUTIONS OF SOME SEMILINEAR PARABOLIC DIFFERENTIAL EQUATIONS [J].
HAYAKAWA, K .
PROCEEDINGS OF THE JAPAN ACADEMY, 1973, 49 (07) :503-505
[4]   New decay estimates for linear damped wave equations and its application to nonlinear problem [J].
Ikehata, R .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2004, 27 (08) :865-889
[5]   Critical exponent for semilinear damped wave equations in the N-dimensional half space [J].
Ikehata, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 288 (02) :803-818
[6]  
Ikehata R., 2003, DIFFERENTIAL INTEGRA, V16, P727, DOI DOI 10.57262/DIE/1356060609
[7]  
Kilbas AA, 1993, Fractional Integral and Derivatives: Theory and Applica- tions
[8]  
Kilbas AA, 2006, THEORY APPL FRACTION, V204, DOI DOI 10.1016/S0304-0208(06)80001-0
[9]  
Kirane M, 2002, ADV NONLINEAR STUD, V2, P41
[10]  
Kirane M., 2002, ELECT J DIFFERENTIAL, V56, P1