Superconvergence of Interpolated Collocation Solutions for Hammerstein Equations

被引:15
作者
Huang, Qiumei [1 ]
Zhang, Shuhua [2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
[2] Tianjin Univ Finance & Econ, Dept Math, Tianjin 300222, Peoples R China
基金
中国国家自然科学基金;
关键词
superconvergence; interpolation postprocessing; the iterated collocation method; Hammerstein equations; smooth and weakly singular kernels; VOLTERRA INTEGRAL-EQUATIONS; PATCH RECOVERY TECHNIQUE; ITERATED COLLOCATION; 2ND KIND; ULTRACONVERGENCE; GALERKIN; KERNEL;
D O I
10.1002/num.20429
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we discuss the superconvergence of the interpolated collocation solutions for Hammerstein equations. Applying this new interpolation postprocessing to the collocation approximation x(h), We get a higher accuracy approximation I(2h)(2r-1)x(h), whose convergence order is the same as that of the iterated collocation method. Such an interpolation postprocessing method is much simpler. Also, numerical experiments are shown to demonstrate the efficiency of the interpolation postprocessing method. (C) 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 26: 290-304, 2010
引用
收藏
页码:290 / 304
页数:15
相关论文
共 35 条
[21]  
LARDY LJ, 1981, J INTEGRAL EQUAT, V3, P43
[22]   An acceleration method for integral equations by using interpolation post-processing [J].
Lin, Q ;
Zhang, SH ;
Yan, NN .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1998, 9 (1-2) :117-129
[23]  
LIN Q, 1991, NUMER MATH, V58, P631
[24]  
Lin Q., 2006, Finite Element Methods: Accuracy and Improvement
[25]  
Lin Q., 1996, Construction and Analysis of High Efficient Finite Elements
[26]  
Sloan I. H., 1990, NUMERICAL SOLUTION I, P35
[27]  
SLOAN IH, 1976, MATH COMPUT, V30, P758, DOI 10.1090/S0025-5718-1976-0474802-4
[28]  
Xu JC, 2004, MATH COMPUT, V73, P1139
[29]  
Zhang S.H., 2000, Applications of Mathematics, V45, P19, DOI DOI 10.1023/A:1022284616125
[30]   A new finite element gradient recovery method: Superconvergence property [J].
Zhang, ZM ;
Naga, A .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (04) :1192-1213