Superconvergence of Interpolated Collocation Solutions for Hammerstein Equations

被引:15
作者
Huang, Qiumei [1 ]
Zhang, Shuhua [2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
[2] Tianjin Univ Finance & Econ, Dept Math, Tianjin 300222, Peoples R China
基金
中国国家自然科学基金;
关键词
superconvergence; interpolation postprocessing; the iterated collocation method; Hammerstein equations; smooth and weakly singular kernels; VOLTERRA INTEGRAL-EQUATIONS; PATCH RECOVERY TECHNIQUE; ITERATED COLLOCATION; 2ND KIND; ULTRACONVERGENCE; GALERKIN; KERNEL;
D O I
10.1002/num.20429
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we discuss the superconvergence of the interpolated collocation solutions for Hammerstein equations. Applying this new interpolation postprocessing to the collocation approximation x(h), We get a higher accuracy approximation I(2h)(2r-1)x(h), whose convergence order is the same as that of the iterated collocation method. Such an interpolation postprocessing method is much simpler. Also, numerical experiments are shown to demonstrate the efficiency of the interpolation postprocessing method. (C) 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 26: 290-304, 2010
引用
收藏
页码:290 / 304
页数:15
相关论文
共 35 条
[1]  
Anselone P. M., 1971, Collectively Compact Operator Approximation Theory and Applications to Integral Equations
[2]  
ATKINSON K.E., 1992, J. Integral Equ. Appl., V4, P15
[3]   PROJECTION AND ITERATED PROJECTION METHODS FOR NONLINEAR INTEGRAL-EQUATIONS [J].
ATKINSON, KE ;
POTRA, FA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (06) :1352-1373
[4]  
ATKINSON KE, 1991, DISCRETE COLLOCATION
[5]   ITERATED COLLOCATION METHODS AND THEIR DISCRETIZATIONS FOR VOLTERRA INTEGRAL-EQUATIONS [J].
BRUNNER, H .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (06) :1132-1145
[6]  
BRUNNER H, 1992, J COMPUT MATH, V10, P348
[7]  
BRUNNER H, 1991, J INTEGRAL EQUAT, V3, P475
[8]  
CHATELIN F, 1983, Spectral Approximations of Linear Operators
[9]  
CHEN Z, FAST MULTIS IN PRESS
[10]   ITERATED GALERKIN VERSUS ITERATED COLLOCATION FOR INTEGRAL-EQUATIONS OF THE 2ND KIND [J].
GRAHAM, IG ;
JOE, S ;
SLOAN, IH .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1985, 5 (03) :355-369