THE R∞ PROPERTY FOR ABELIAN GROUPS

被引:0
作者
Dekimpe, Karel [1 ]
Goncalves, Daciberg [2 ]
机构
[1] KU Leuven Kulak, E Sabbelaan 53, B-8500 Kortrijk, Belgium
[2] Univ Sao Paulo, Dept Matemat IME, BR-05314970 Sao Paulo, Brazil
关键词
Reidemeister number; twisted conjugacy classes; Reidemeister classes; R infinity property; Abelian group; TWISTED CONJUGACY CLASSES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known there is no finitely generated abelian group which has the R infinity property. We will show that also many non-finitely generated abelian groups do not have the R infinity property, but this does not hold for all of them! In fact we construct an uncountable number of infinite countable abelian groups which do have the R infinity. property. We also construct an abelian group such that the cardinality of the Reidemeister classes is uncountable for any automorphism of that group.
引用
收藏
页码:773 / 784
页数:12
相关论文
共 11 条
  • [1] The R∞ property for free groups, free nilpotent groups and free solvable groups
    Dekimpe, Karel
    Goncalves, Daciberg
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2014, 46 : 737 - 746
  • [2] Fel'shtyn A, 2000, MEM AM MATH SOC, V147, P1
  • [3] Twisted conjugacy classes in saturated weakly branch groups
    Fel'shtyn, Alexander
    Leonov, Yuriy
    Troitsky, Evgenij
    [J]. GEOMETRIAE DEDICATA, 2008, 134 (01) : 61 - 73
  • [4] New directions in Nielsen-Reidemeister theory
    Fel'shtyn, Alexander
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (10-11) : 1724 - 1735
  • [5] Fuchs L., 1970, Infinite Abelian Groups. Vol. I
  • [6] Jiang BJ, 2005, HANDBOOK OF TOPOLOGICAL FIXED POINT THEORY, P617, DOI 10.1007/1-4020-3222-6_16
  • [7] KAPLANSKY I., 1970, INFINITE ABELIAN GRO
  • [8] TWISTED CONJUGACY CLASSES IN LATTICES IN SEMISIMPLE LIE GROUPS
    Mubeena, T.
    Sankaran, P.
    [J]. TRANSFORMATION GROUPS, 2014, 19 (01) : 159 - 169
  • [9] Twisted Conjugacy Classes in Abelian Extensions of Certain Linear Groups
    Mubeena, T.
    Sankaran, P.
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (01): : 132 - 140
  • [10] Twisted conjugacy classes in general and special linear groups
    Nasybullov, T. R.
    [J]. ALGEBRA AND LOGIC, 2012, 51 (03) : 220 - 231