Discrete-time recurrent high order neural networks for nonlinear identification

被引:41
作者
Alanis, Alma Y. [1 ]
Sanchez, Edgar N. [2 ]
Loukianov, Alexander G. [2 ]
Hernandez, EstebanA. [3 ]
机构
[1] Univ Guadalajara, CUCEI, Zapopan 45080, Jalisco, Mexico
[2] CINVESTAV, Unidad Guadalajara, Guadalajara 45091, Jalisco, Mexico
[3] NUI Maynooth, Hamilton Inst, Maynooth, Kildare, Ireland
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2010年 / 347卷 / 07期
关键词
Recurrent neural networks - Nonlinear systems;
D O I
10.1016/j.jfranklin.2010.05.018
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper focuses on the problem of discrete-time nonlinear system identification via recurrent high order neural networks. It includes the respective stability analysis on the basis of the Lyapunov approach for the NN training algorithm. Applicability of the proposed scheme is illustrated via simulation for a discrete-time nonlinear model of an electric induction motor. (C) 2010 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1253 / 1265
页数:13
相关论文
共 16 条
[1]   Discrete-time adaptive backstepping nonlinear control via high-order neural networks [J].
Alanis, Alma Y. ;
Sanchez, Edgar N. ;
Loukianov, Alexander G. .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2007, 18 (04) :1185-1195
[2]  
[Anonymous], 2000, ADV TK CONT SIGN PRO
[3]  
[Anonymous], 1999, Sliding mode control in electromechanical systems
[4]  
Farrell J. A., 2006, Adaptive Approximation Based Control: Unifying Neural, Fuzzy and Traditional Adaptive Approximation Approaches
[5]  
Ge S. S., 2004, IEEE T SYSTEMS MAN B, V34
[6]  
GHAZALI R, 2006, P IASTED ART INT SOF
[7]  
Ghosh J., 1993, International Journal of Neural Systems, V3, P323, DOI 10.1142/S0129065792000255
[8]  
Haykin S., 1999, Neural Networks: A Comprehensive Foundation, DOI DOI 10.1017/S0269888998214044
[9]  
Khalil H. K., 1996, Non linear Systems, V2nd
[10]  
Khorrami F., 2003, POWER SYST