Characterization of the Lovelock gravity by Bianchi derivative

被引:56
作者
Dadhich, Naresh [1 ]
机构
[1] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India
来源
PRAMANA-JOURNAL OF PHYSICS | 2010年 / 74卷 / 06期
关键词
Gauss-Bonnet gravity; Lovelock gravity; higher derivative; higher dimensions; Bianchi derivative;
D O I
10.1007/s12043-010-0080-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove the theorem: The second-order quasilinear differential operator as a second-rank divergence-free tensor in the equation of motion for gravitation could always be derived from the trace of the Bianchi derivative of the fourth-rank tensor, which is a homogeneous polynomial in curvatures. The existence of such a tensor for each term in the polynomial Lagrangian is a new characterization of the Lovelock gravity.
引用
收藏
页码:875 / 882
页数:8
相关论文
共 9 条
[1]  
DADHICH N, GRQC0311028
[2]  
DADHICH N, 2007, P INT WORKSH THEOR H, P101
[3]  
DADHICH N, GRQC0102009
[4]   Lovelock gravity at the crossroads of Palatini and metric formulations [J].
Exirifard, Q. ;
Sheikh-Jabbari, M. M. .
PHYSICS LETTERS B, 2008, 661 (2-3) :158-161
[5]   EINSTEIN TENSOR AND ITS GENERALIZATIONS [J].
LOVELOCK, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (03) :498-&
[6]  
Misner C., 1973, GRAVITATION
[7]   Holography of gravitational action functionals [J].
Mukhopadhyay, Ayan ;
Padmanabhan, T. .
PHYSICAL REVIEW D, 2006, 74 (12)
[8]  
Qadir, 2007, P 12 REG C MATH PHYS, P331
[9]   CURVATURE SQUARED TERMS AND STRING THEORIES [J].
ZWIEBACH, B .
PHYSICS LETTERS B, 1985, 156 (5-6) :315-317