共 94 条
Sponge-like carbon thin films: The dealloying concept applied to copper/carbon nanocomposite
被引:14
作者:
Bouts, Nicolas
[1
]
El Mel, Abdel-Aziz
[1
]
Angleraud, Benoit
[1
]
Tessier, Pierre-Yves
[1
]
机构:
[1] Univ Nantes, CNRS, Inst Mat Jean Rouxel IMN, UMR 6502, F-44322 Nantes 3, France
来源:
关键词:
CARBIDE-DERIVED CARBONS;
DIAMOND-LIKE CARBON;
NANOPOROUS GOLD;
MESOPOROUS CARBON;
SURFACE-AREA;
IONIC LIQUID;
FABRICATION;
EVOLUTION;
POROSITY;
ELECTRODES;
D O I:
10.1016/j.carbon.2014.11.006
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Nanoporous carbon thin films are prepared by means of a selective etching process in nitric acid applied to nanocomposite copper/carbon (nc-Cu/C) thin films grown by magnetron cosputtering process. Laying on the electrical percolation theory, we demonstrate that to achieve a full etching of the copper phase present within the nc-Cu/C films, the Cu nanoparticles must be percolated. We further show that by adjusting the initial copper content within the nc-Cu/C films (between 61 and 85 at.%), the pore size can be tuned accurately between 2 and 11 am. Contrary to what one may expect, increasing the pore size from 2 to 11 am induces an increase in the electrical conductivity of the nanoporous films from 82 to 308 S cm(-1). This unexpected electrical behavior is attributed to the structural modification of the carbon skeleton forming the porous material during the etching process. We further show that the transparency of such nanoporous films can be also controlled by tuning the pore size. The fact that the films with the highest electrical conductivity show the lowest optical absorption coefficient makes such material a very promising candidate for transparent electrode applications. This low temperature (less than 100 degrees C) synthesis approach will pave the way for the direct integration of conductive nanoporous carbon materials in thin film-based flexible electronic devices. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:250 / 261
页数:12
相关论文