Bingham Viscoplastic as a Limit of Non-Newtonian Fluids

被引:37
作者
Shelukhin, V. V. [1 ]
机构
[1] Russian Acad Sci, Siberian Div, Lavrentyev Inst Hydrodynam, Lavrentyev Pr 15, Novosibirsk 630090, Russia
关键词
Viscous incompressible non-Newtonian fluid; weak existence; Stefan problem;
D O I
10.1007/s00021-002-8538-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new formulation is proposed for the equations of the Bingham viscoplastic. Global existence of x-periodic solutions is proved. A uniqueness theorem is established in the two-dimensional case. A relation with the G. Duvaut-J. L. Lions variational inequality is discussed, and a result on equivalence is obtained. The question of interaction between fluid-rigid phases is studied when the initial state is rigid. A free-boundary problem that describes two-phase one-dimensional flows is considered.
引用
收藏
页码:109 / 127
页数:19
相关论文
共 27 条
[11]   GENERAL FREE-BOUNDARY PROBLEMS FOR HEAT EQUATION .2. [J].
FASANO, A ;
PRIMICERIO, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1977, 58 (01) :202-231
[12]  
Galdi G.P., 1994, SPRINGER TRACTS NATU, VI
[13]   Essay on the mechanics of isotropic continua [J].
Hohenemser, K ;
Prager, W .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1932, 12 :216-226
[14]  
Kamenomostskaja S L, 1958, NAUCN DOKL VYSS SKOL, V1, P60
[15]  
LADYZHENSKAYA O, 1970, BOUND VALUE PROBL, V2, P57
[16]  
LADYZHENSKAYA OA, 2000, AM MATH SOC TRANSL, V164, P99
[17]  
Ladyzhenskaya OA, 1968, TRANSLATION MATH MON, V23
[18]  
LIONS JL, 1969, QUELQUER METHODS RES
[19]  
Lions P.-L., 1998, Oxford Lecture Series in Mathematics and Its Applications, V2
[20]  
Malek J., 1996, WEAK MEASURE VALUED