AN EXPLICIT FORMULA FOR THE SPLITTING OF MULTIPLE EIGENVALUES FOR NONLINEAR EIGENVALUE PROBLEMS AND CONNECTIONS WITH THE LINEARIZATION FOR THE DELAY EIGENVALUE PROBLEM

被引:24
作者
Michiels, Wim [1 ]
Boussaada, Islam [2 ,3 ]
Niculescu, Silviu-Iulian [2 ,3 ]
机构
[1] Katholieke Univ Leuven, Dept Comp Sci, B-3001 Heverlee, Belgium
[2] Univ Paris Sud, IPSA, Lab Signanx & Syst, F-91192 Gif Sur Yvette, France
[3] Univ Paris Sud, CNRS, Cent Supelec, F-91192 Gif Sur Yvette, France
关键词
nonlinear eigenvalue problems; systems of functional equations and inequalities; perturbations of nonlinear operators; asymptotic distribution of eigenvalues and eigenfunctions; matrix and operator equations; ANALYTIC MATRIX FUNCTIONS; PERTURBATION; EQUATIONS; SYSTEMS; STABILITY; ROOTS;
D O I
10.1137/16M107774X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We contribute to the perturbation theory of nonlinear eigenvalue problems in three ways. First, we extend the formula for the sensitivity of a simple eigenvalue with respect to a variation of a parameter to the case of multiple nonsemisimple eigenvalues, thereby providing an explicit expression for the leading coefficients of the Puiseux series of the emanating branches of eigenvalues. Second, for a broad class of delay eigenvalue problems, the connection between the finitedimensional nonlinear eigenvalue problem and an associated infinite-dimensional linear eigenvalue problem is emphasized in the developed perturbation theory. Finally, in contrast to existing work on analyzing multiple eigenvalues of delay systems, we develop all theory in a matrix framework, i.e., without reduction of a problem to the analysis of a scalar characteristic quasi-polynomial.
引用
收藏
页码:599 / 620
页数:22
相关论文
共 28 条
  • [1] [Anonymous], 1977, APPL MATH SCI
  • [2] [Anonymous], 1993, INTRO FUNCTIONAL DIF, DOI 10.1007/978-1-4612-4342-7
  • [3] Characterizing the Codimension of Zero Singularities for Time-Delay Systems
    Boussaada, Islam
    Niculescu, Silviu-Iulian
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2016, 145 (01) : 47 - 88
  • [4] Tracking the Algebraic Multiplicity of Crossing Imaginary Roots for Generic Quasipolynomials: A Vandermonde-Based Approach
    Boussaada, Islam
    Niculescu, Silviu-Iulian
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (06) : 1601 - 1606
  • [5] Two numerical methods for optimizing matrix stability
    Burke, JV
    Lewis, AS
    Lewi, SB
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 351 : 117 - 145
  • [6] AN EIGENVALUE PERTURBATION APPROACH TO STABILITY ANALYSIS, PART I: EIGENVALUE SERIES OF MATRIX OPERATORS
    Chen, Jie
    Fu, Peilin
    Niculescu, Silviu-Iulian
    Guan, Zhihong
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2010, 48 (08) : 5564 - 5582
  • [7] Curtain RF., 2012, INTRO INFINITE DIMEN
  • [8] COMPUTATIONAL METHODS FOR BIFURCATION PROBLEMS WITH SYMMETRIES - WITH SPECIAL ATTENTION TO STEADY-STATE AND HOPF-BIFURCATION POINTS
    DELLNITZ, M
    WERNER, B
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1989, 26 (1-2) : 97 - 123
  • [9] ON THE LOCAL THEORY OF REGULAR ANALYTIC MATRIX FUNCTIONS
    GOHBERG, I
    KAASHOEK, MA
    VANSCHAGEN, F
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 182 : 9 - 25
  • [10] Gui KQ, 2015, IEEE DECIS CONTR P, P6410, DOI 10.1109/CDC.2015.7403229