Visible to Mid-Infrared Optical Constants of Orthopyroxenes

被引:3
作者
Rucks, Melinda J. [1 ]
Ye, Cheng [2 ,3 ]
Sklute, Elizabeth C. [4 ]
Arnold, Jessica A. [5 ]
DiFrancesco, Nicholas J. [6 ]
Glotch, Timothy D. [2 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
[2] SUNY Stony Brook, Stony Brook, NY 11794 USA
[3] No Arizona Univ, Flagstaff, AZ 86011 USA
[4] Planetary Sci Inst, Tucson, AZ USA
[5] Army Res Lab, Adelphi, MD USA
[6] SUNY Coll Oswego, Oswego, NY USA
基金
美国国家科学基金会;
关键词
INTERSTELLAR SILICATE MINERALOGY; BIDIRECTIONAL REFLECTANCE SPECTROSCOPY; MONOCLINIC ANISOTROPIC CRYSTALS; INFRARED-EMISSION SPECTROSCOPY; MG-FE; INTERPLANETARY DUST; ABSORPTION-SPECTRA; RADIATIVE-TRANSFER; CALCIUM CONTENT; ORDER-DISORDER;
D O I
10.1029/2021EA002104
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Radiative transfer models of remotely acquired infrared spectra result in quantitative identification of minerals on planetary surfaces. Optical constants, or the real (n) and imaginary (k) indices of refraction are necessary inputs in such models. Pyroxenes are ubiquitous on the surfaces of terrestrial bodies within our solar system and can be readily used as thermo-barometers to interpret magmatic histories. However, optical constants for intermediate pyroxene compositions are undetermined. Here, we have determined the optical constants of two natural orthopyroxenes both in the visible/near-infrared (VNIR) and mid-infrared (MIR) regions. VNIR reflectance spectra were measured using powdered samples and modeled using a combination of Hapke theory and Kramers-Kronig analysis. MIR reflectance spectra were measured on oriented single crystal samples with non-normal incidence and modeled using Lorentz-Lorenz dispersion theory. The optical constants derived here are available to the scientific community at https://doi.org/10.5281/zenodo.4758045 to be used in the interpretation of remote sensing data.
引用
收藏
页数:23
相关论文
共 103 条
[1]   VISIBLE AND NEAR-INFRARED DIFFUSE REFLECTANCE SPECTRA OF PYROXENES AS APPLIED TO REMOTE-SENSING OF SOLID OBJECTS IN SOLAR-SYSTEM [J].
ADAMS, JB .
JOURNAL OF GEOPHYSICAL RESEARCH, 1974, 79 (32) :4829-4836
[2]  
[Anonymous], 2012, Theory of Reflectance and Emittance Spectroscopy
[3]  
ANOVITZ LM, 1988, AM MINERAL, V73, P1060
[4]   Constraints on olivine-rich rock types on the Moon as observed by Diviner and M3: Implications for the formation of the lunar crust [J].
Arnold, J. A. ;
Glotch, T. D. ;
Lucey, P. G. ;
Song, E. ;
Thomas, I. R. ;
Bowles, N. E. ;
Greenhagen, B. T. .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2016, 121 (07) :1342-1361
[5]   Mid-infrared optical constants of clinopyroxene and orthoclase derived from oriented single-crystal reflectance spectra [J].
Arnold, Jessica A. ;
Glotch, Timothy D. ;
Plonka, Anna M. .
AMERICAN MINERALOGIST, 2014, 99 (10) :1942-1955
[6]   OPTICAL-CONSTANTS OF MONOCLINIC ANISOTROPIC CRYSTALS - GYPSUM [J].
ARONSON, JR ;
EMSLIE, AG ;
MISEO, EV ;
SMITH, EM ;
STRONG, PF .
APPLIED OPTICS, 1983, 22 (24) :4093-4098
[7]   OPTICAL-CONSTANTS OF MONOCLINIC ANISOTROPIC CRYSTALS - ORTHOCLASE [J].
ARONSON, JR .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 1986, 42 (2-3) :187-190
[8]   A global view of Martian surface compositions from MGS-TES [J].
Bandfield, JL ;
Hamilton, VE ;
Christensen, PR .
SCIENCE, 2000, 287 (5458) :1626-1630
[9]  
Bennett C.L., 2021, 52 LUN PLAN SCI C MA
[10]   Mars surface diversity as revealed by the OMEGA/Mars Express observations [J].
Bibring, JP ;
Langevin, Y ;
Gendrin, A ;
Gondet, B ;
Poulet, F ;
Berthé, M ;
Soufflot, A ;
Arvidson, R ;
Mangold, N ;
Mustard, J ;
Drossart, P .
SCIENCE, 2005, 307 (5715) :1576-1581