Magnetically Recyclable Catalytic Carbon Nanoreactors

被引:23
作者
Ayguen, Mehtap [1 ,2 ]
Chamberlain, Thomas W. [3 ]
Gimenez-Lopez, Maria del Carmen [2 ]
Khlobystov, Andrei N. [1 ,4 ]
机构
[1] Univ Nottingham, Sch Chem, Univ Pk, Nottingham NG7 2RD, England
[2] Univ Santiago de Compostela, Ctr Singular Invest Quim Biol & Mat Mol CIQUS, Santiago De Compostela 15782, Spain
[3] Univ Leeds, Sch Chem, Inst Proc Res & Dev, Leeds LS2 9JT, W Yorkshire, England
[4] Univ Nottingham, Nanoscale & Microscale Res Ctr, Univ Pk, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会;
关键词
magnetic nanoparticles; nanocatalysis; nanoreactors; nanotubes; nitrobenzene reduction; SUPPORTED PALLADIUM CATALYST; LIQUID-PHASE HYDROGENATION; RAY CRYSTAL ANALYSIS; NITROBENZENE HYDROGENATION; HYDROSILYLATION REACTION; NANOSCALE CONFINEMENT; COBALT NANOPARTICLES; NITROARENE REDUCTION; ARYL HALIDES; NANOTUBES;
D O I
10.1002/adfm.201802869
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Multifunctional nanoreactors are assembled using hollow graphitized carbon nanofibers (GNFs) combined with nanocatalysts (Pd or Pt) and magnetic nanoparticles. The latter are introduced in the form of carbon-coated cobalt nanomagnets (Co@C-n) adsorbed on GNF, or formed directly on GNF from ferrocene yielding carbon-coated iron nanomagnets (Fe@C-n). High-resolution transmission electron microscopy demonstrates that Co@C-n and Fe@C-n are attached effectively to the GNFs, and the loading of nanomagnets required for separation of the nanoreactors from the solution with an external magnetic field is determined using UV-vis spectroscopy. Magnetically functionalized GNFs combined with palladium or platinum nanoparticles result in catalytically active magnetically separable nanoreactors. Applied to the reduction of nitrobenzene the multifunctional nanoreactors demonstrate high activity and excellent durability, while their magnetic recovery enables significant improvement in the reuse of the nanocatalyst over five reaction cycles (catalyst loss < 0.5 wt%) as compared to the catalyst recovery by filtration (catalyst loss <10 wt%).
引用
收藏
页数:15
相关论文
共 73 条
[1]  
[Anonymous], ANGEW CHEM
[2]   Comparison of alkene hydrogenation in carbon nanoreactors of different diameters: probing the effects of nanoscale confinement on ruthenium nanoparticle catalysis [J].
Aygun, Mehtap ;
Stoppiello, Craig T. ;
Lebedeva, Maria A. ;
Smith, Emily F. ;
Gimenez-Lopez, Maria del Carmen ;
Khlobystov, Andrei N. ;
Chamberlain, Thomas W. .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (40) :21467-21477
[3]   Magnetic Carbon-Supported Palladium Nanoparticles: An Efficient and Sustainable Catalyst for Hydrogenation Reactions [J].
Baig, R. B. Nasir ;
Varma, Rajender S. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2014, 2 (09) :2155-2158
[4]   MAGNETISM FROM THE ATOM TO THE BULK IN IRON, COBALT, AND NICKEL CLUSTERS [J].
BILLAS, IML ;
CHATELAIN, A ;
DEHEER, WA .
SCIENCE, 1994, 265 (5179) :1682-1684
[5]   Catalytic nanoreactors in continuous flow: hydrogenation inside single-walled carbon nanotubes using supercritical CO2 [J].
Chamberlain, Thomas W. ;
Earley, James H. ;
Anderson, Daniel P. ;
Khlobystov, Andrei N. ;
Bourne, Richard A. .
CHEMICAL COMMUNICATIONS, 2014, 50 (40) :5200-5202
[6]   Carbon nanotubes combined with inorganic nanomaterials: Preparations and applications [J].
Chu, Haibin ;
Wei, Li ;
Cui, Rongli ;
Wang, Jinyong ;
Li, Yan .
COORDINATION CHEMISTRY REVIEWS, 2010, 254 (9-10) :1117-1134
[7]   Optical density as a probe of carbon nanotubes dispersion in polymers [J].
Combessis, Anthony ;
Mazel, Christelle ;
Maugin, Melek ;
Flandin, Lionel .
JOURNAL OF APPLIED POLYMER SCIENCE, 2013, 130 (03) :1778-1786
[8]   A different reaction pathway for the reduction of aromatic nitro compounds on gold catalysts [J].
Corma, Avelino ;
Concepcion, Patricia ;
Serna, Pedro .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (38) :7266-7269
[9]   Palladium nanoparticles in catalytic carbon nanoreactors: the effect of confinement on Suzuki-Miyaura reactions [J].
Cornelio, B. ;
Saunders, A. R. ;
Solomonsz, W. A. ;
Laronze-Cochard, M. ;
Fontana, A. ;
Sapi, J. ;
Khlobystov, A. N. ;
Rance, G. A. .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (07) :3918-3927
[10]  
Daenen M., 2003, The wondrous world of carbon nanotubes. A review of current carbon nanotube technologies, P1