Manifolds of low dimension with trivial canonical bundle in Grassmannians

被引:7
作者
Benedetti, Vladimiro [1 ]
机构
[1] Aix Marseille Univ, I2M, Cent Marseille, CNRS,UMR 7373, F-13453 Marseille, France
关键词
GEOMETRY;
D O I
10.1007/s00209-017-2017-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study fourfolds with trivial canonical bundle which are zero loci of sections of homogeneous, completely reducible bundles over ordinary and classical complex Grass-mannians. We prove that the only hyper-Kahler fourfolds among them are the example of Beauville and Donagi, and the example of Debarre and Voisin. In doing so, we give a complete classification of those varieties. We include also the analogous classification for surfaces and threefolds.
引用
收藏
页码:251 / 287
页数:37
相关论文
共 20 条
[1]  
[Anonymous], MACAULAY2 SOFTWARE S
[2]  
[Anonymous], 2006, Moduli Spaces and Arithmetic Geometry, Adv. Stud. Pure Math., V45, P315
[3]  
BEAUVILLE A, 1985, CR ACAD SCI I-MATH, V301, P703
[4]  
BEAUVILLE A, 1984, DIFFERENTIAL GEOM, V0018, P00755, DOI DOI 10.4310/JDG/1214438181
[5]  
Bogomolov FA, 1974, MAT SBORNIK, V93, P573
[6]   HOMOGENEOUS VECTOR BUNDLES [J].
BOTT, R .
ANNALS OF MATHEMATICS, 1957, 66 (02) :203-248
[7]  
Brion M, 2005, TRENDS MATH, P33, DOI 10.1007/3-7643-7342-3_2
[8]   Quantum Pieri rules for isotropic Grassmannians [J].
Buch, Anders Skovsted ;
Kresch, Andrew ;
Tamvakis, Harry .
INVENTIONES MATHEMATICAE, 2009, 178 (02) :345-405
[9]   Hyper-Kahler fourfolds and Grassmann geometry [J].
Debarre, Olivier ;
Voisin, Claire .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 649 :63-87
[10]   INTEGRAL SYMMETRICAL INVARIANTS OF WEYL AND TORSION GROUPS [J].
DEMAZURE, M .
INVENTIONES MATHEMATICAE, 1973, 21 (04) :287-301