Subdiffusion in a one-dimensional Anderson insulator with random dephasing: Finite-size scaling, Griffiths effects, and possible implications for many-body localization

被引:24
作者
Taylor, Scott R. [1 ]
Scardicchio, Antonello [1 ,2 ]
机构
[1] Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
[2] Ist Nazl Fis Nucl, Sez Trieste, Via Valerio 2, I-34126 Trieste, Italy
关键词
DIFFUSION; TRANSPORT; ABSENCE; CHAIN;
D O I
10.1103/PhysRevB.103.184202
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study transport in a one-dimensional boundary-driven Anderson insulator (the XX spin chain with onsite disorder) with randomly positioned onsite dephasing, observing a transition from diffusive to subdiffusive spin transport below a critical density of sites with dephasing. This model is intended to mimic the passage of an excitation through (many-body) insulating regions or ergodic bubbles, therefore providing a toy model for the diffusion-subdiffusion transition observed in the disordered Heisenberg model by Znidaric et al. [Phys. Rev. Lett. 117, 040601 (2016)]. We also present the exact solution of a semiclassical model of conductors and insulators introduced by Agarwal et al. [Phys. Rev. Lett. 114, 160401 (2015)], which exhibits both diffusive and subdiffusive phases, and qualitatively reproduces the results of the quantum system. The critical properties of both models, when passing from diffusion to subdiffusion, are interpreted in terms of "Griffiths effects." We show that the finite-size scaling comes from the interplay of three characteristic lengths: one associated with disorder (the localization length), one with dephasing, and the third with the percolation problem defining large, rare, insulating regions. We conjecture that the latter, which grows logarithmically with system size, may potentially be responsible for the fact that heavy-tailed resistance distributions typical of Griffiths effects have not been observed in subdiffusive interacting systems.
引用
收藏
页数:13
相关论文
共 66 条
[1]   Distinguishing localization from chaos: Challenges in finite-size systems [J].
Abanin, D. A. ;
Bardarson, J. H. ;
De Tomasi, G. ;
Gopalakrishnan, S. ;
Khemani, V ;
Parameswaran, S. A. ;
Pollmann, F. ;
Potter, A. C. ;
Serbyn, M. ;
Vasseur, R. .
ANNALS OF PHYSICS, 2021, 427
[2]   Recent progress in many-body localization [J].
Abanin, Dmitry A. ;
Papic, Zlatko .
ANNALEN DER PHYSIK, 2017, 529 (07)
[3]   SCALING THEORY OF LOCALIZATION - ABSENCE OF QUANTUM DIFFUSION IN 2 DIMENSIONS [J].
ABRAHAMS, E ;
ANDERSON, PW ;
LICCIARDELLO, DC ;
RAMAKRISHNAN, TV .
PHYSICAL REVIEW LETTERS, 1979, 42 (10) :673-676
[4]   Rare-region effects and dynamics near the many-body localization transition [J].
Agarwal, Kartiek ;
Altman, Ehud ;
Demler, Eugene ;
Gopalakrishnan, Sarang ;
Huse, David A. ;
Knap, Michael .
ANNALEN DER PHYSIK, 2017, 529 (07)
[5]   Anomalous Diffusion and Griffiths Effects Near the Many-Body Localization Transition [J].
Agarwal, Kartiek ;
Gopalakrishnan, Sarang ;
Knap, Michael ;
Mueller, Markus ;
Demler, Eugene .
PHYSICAL REVIEW LETTERS, 2015, 114 (16)
[6]   Universal Dynamics and Renormalization in Many-Body-Localized Systems [J].
Altman, Ehud ;
Vosk, Ronen .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 6, 2015, 6 :383-409
[7]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[8]  
[Anonymous], ARXIV171109880
[9]   Absence of Diffusion in an Interacting System of Spinless Fermions on a One-Dimensional Disordered Lattice [J].
Bar Lev, Yevgeny ;
Cohen, Guy ;
Reichman, David R. .
PHYSICAL REVIEW LETTERS, 2015, 114 (10)
[10]   Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states [J].
Basko, DM ;
Aleiner, IL ;
Altshuler, BL .
ANNALS OF PHYSICS, 2006, 321 (05) :1126-1205