High-rate performance electrospun Na0.44MnO2 nanofibers as cathode material for sodium-ion batteries

被引:97
|
作者
Fu, Bi [1 ,2 ]
Zhou, Xuan [1 ]
Wang, Yaping [2 ]
机构
[1] Kettering Univ, Dept Elect & Comp Engn, Flint, MI 48504 USA
[2] Xi An Jiao Tong Univ, Sch Sci, State Key Lab Mfg Syst Engn, Xian 710049, Peoples R China
关键词
Sodium-ion batteries; Electrospinning; Na0.44MnO2; Nanofiber; Rate performance; POSITIVE ELECTRODE; NANOWIRES; CONVERSION; OXIDE;
D O I
10.1016/j.jpowsour.2016.01.101
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sodium-ion batteries (SIBs) are considered as one of the most promising candidates to replace lithium ion batteries (LIBs), because of their similar electrochemical properties, and geographical limitations of lithium. However, searching for the appropriate cathode materials for SIBs that can accommodate structure change during the insertion and extraction of sodium ions is facing great challenges due to the relatively larger size of sodium ion. Na0.44MnO2 has recently attracted significant attention because its crystal structure exhibits two types of large channels formed by MnO6 octahedra and MnO5 square pyramids, which facilitate the transportation of sodium ions. However, suffering from the slow kinetics and structural degradation, its rate performance is still not satisfied. Here, we report the fabrication of two types of Na0.44MnO2 hierarchical structures by optimized electrospinning and controlled subsequent annealing process. One is nanofiber (NF) which demonstrates a superior rate performance with reversible specific capacity of 69.5 mAh g(-1) at 10 C, attributed to its one-dimensional (1D) ultralong and continuous fibrous network structure; the other is nanorod (NR) which exhibits an excellent cyclic performance with reversible specific capacity of 120 mAh g(-1) after 140 cycles, due to its large S-shaped tunnel structure with a single crystalline structure. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:102 / 108
页数:7
相关论文
共 50 条
  • [1] Durable high-rate capability Na0.44MnO2 cathode material for sodium-ion batteries
    He, Xin
    Wang, Jun
    Qiu, Bao
    Paillard, Elie
    Ma, Chuze
    Cao, Xia
    Liu, Haodong
    Stan, Marian Cristian
    Liu, Haidong
    Gallash, Tobias
    Meng, Y. Shirley
    Li, Jie
    NANO ENERGY, 2016, 27 : 602 - 610
  • [2] Titanium-Substituted Na0.44MnO2 Nanorods as Cathode Materials for High Performance Sodium-Ion Batteries
    Zhan, Pan
    Jiao, Kailong
    Wang, Junxiang
    Hu, Zongqian
    Ma, Rui
    Zhu, Hongmin
    Jiao, Shuqiang
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (12) : A2296 - A2301
  • [3] High-Performance B-Doped Na0.44MnO2 Cathode Materials for Sodium-Ion Batteries
    Liu, Zhen Ming
    Feng, Xing Ting
    Zhao, Hai Jun
    Han, Xiao Qing
    Ye, Zi Xian
    Yao, Zhi Chao
    Zhang, Ding
    ACS OMEGA, 2025, 10 (10): : 10023 - 10033
  • [4] Ultrasonic sonochemical synthesis of Na0.44MnO2 insertion material for sodium-ion batteries
    Shinde, Ganesh Suryakant
    Nayak, Prem Depan
    Vanam, Sai Pranav
    Jain, Sandeep Kumar
    Pathak, Amar Deep
    Sanyal, Suchismita
    Balachandran, Janakiraman
    Barpanda, Prabeer
    JOURNAL OF POWER SOURCES, 2019, 416 : 50 - 55
  • [5] Single crystalline nanorods of Na0.44MnO2 enhanced by reduced graphene oxides as a high rate and high capacity cathode material for sodium-ion batteries
    Fu, Bi
    Su, Yong
    Yu, Junxi
    Xie, Shuhong
    Li, Jiangyu
    ELECTROCHIMICA ACTA, 2019, 303 : 125 - 132
  • [6] Multiangular Rod-Shaped Na0.44MnO2 as Cathode Materials with High Rate and Long Life for Sodium-Ion Batteries
    Liu, Qiannan
    Hu, Zhe
    Chen, Mingzhe
    Gu, Qinfen
    Dou, Yuhai
    Sung, Ziqi
    Chou, Shulei
    Dou, Shi Xue
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (04) : 3644 - 3652
  • [7] Na0.44MnO2 coated with In2O3 as a high-voltage cathode for sodium-ion batteries
    Liu, Wen
    Ren, Qiaochu
    Yang, Min
    Liu, Li
    Zhang, Yue
    Su, Die
    Wen, Jiaxing
    Wang, Qianfu
    Wang, Xianyou
    Feng, Yan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 896
  • [8] Na0.44MnO2 coated with In2O3 as a high-voltage cathode for sodium-ion batteries
    Liu, Wen
    Ren, Qiaochu
    Yang, Min
    Liu, Li
    Zhang, Yue
    Su, Die
    Wen, Jiaxing
    Wang, Qianfu
    Wang, Xianyou
    Feng, Yan
    Journal of Alloys and Compounds, 2022, 896
  • [9] Fe doping mechanism of Na0.44MnO2 tunnel phase cathode electrode in sodium-ion batteries
    Zhang, Huiyu
    Xiang, Yanhong
    Liu, Baocheng
    Li, Guang
    Dun, Chen
    Huang, Haoyu
    Zou, Qiuling
    Xiong, Lizhi
    Wu, Xianwen
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 661 : 389 - 400
  • [10] Fe doping mechanism of Na0.44MnO2 tunnel phase cathode electrode in sodium-ion batteries
    Zhang, Huiyu
    Xiang, Yanhong
    Liu, Baocheng
    Li, Guang
    Dun, Chen
    Huang, Haoyu
    Zou, Qiuling
    Xiong, Lizhi
    Wu, Xianwen
    Journal of Colloid and Interface Science, 2024, 661 : 389 - 400