An investigation on gas hydrate formation and slurry viscosity in the presence of wax crystals

被引:72
作者
Shi, Bo-Hui [1 ,2 ]
Chai, Shuai [3 ]
Ding, Lin [1 ,2 ]
Chen, Yu-Chuan [1 ,2 ]
Liu, Yang [1 ,2 ]
Song, Shang-Fei [1 ,2 ]
Yao, Hai-Yuan [4 ]
Wu, Hai-Hao [1 ,2 ]
Wang, Wei [1 ,2 ]
Gong, Jing [1 ,2 ]
机构
[1] MOE Key Lab Petr Engn, Natl Engn Lab Pipeline Safety, Beijing, Peoples R China
[2] China Univ Petr, Key Lab Urban Oil & Gas Distribut Technol, Beijing 102249, Peoples R China
[3] Sinopec Engn Inc, Beijing 100101, Peoples R China
[4] CNOOC Res Inst Co Ltd, Key Lab Deepwater Engn, Beijing 100028, Peoples R China
基金
中国国家自然科学基金;
关键词
hydrates; wax crystals; hydrate formation; induction time; hydrate slurry viscosity; PARTICLE-SIZE DISTRIBUTION; IN-OIL EMULSIONS; CO2; CAPTURE; SHELL-MODEL; RHEOLOGICAL PROPERTIES; THERMAL-STIMULATION; ANTI-AGGLOMERANT; PHASE-CHANGE; MINERAL-OIL; WATER;
D O I
10.1002/aic.16192
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Clarifying the interaction effect between hydrate and wax is of great significance to guarantee operation safety in deep water petroleum fields. Experiments in a high-pressure hydrate slurry rheological measurement system were carried out to investigate hydrate formation and slurry viscosity in the presence of wax crystals. Results indicate that the presence of wax crystals can prolong hydrate nucleation induction time, and its influence on hydrate growth depends on multiple factors. Higher stirring rate can obviously promote hydrate growth rate, while its influence on hydrate nucleation induction time is complicated. Higher initial pressure will promote hydrate formation. Gas hydrate slurry shows a shear-thinning behavior, and slurry viscosity increases with the increase of wax content and initial pressure. A semiempirical viscosity model showing a well-fitting is established for hydrate slurry with wax crystals by considering the aggregation and breakage of hydrate particles, wax crystals, and water droplets. (c) 2018 American Institute of Chemical Engineers AIChE J, 64: 3502-3518, 2018
引用
收藏
页码:3502 / 3518
页数:17
相关论文
共 91 条
[1]  
Andersson V., 2006, ANN NEW YORK ACAD SC, V912, P322, DOI [10.1111/j.1749-6632.2000.tb06786.x, DOI 10.1111/J.1749-6632.2000.TB06786.X]
[2]   Effects of antiagglomerants on the interactions between hydrate particles [J].
Anklam, Mark R. ;
York, J. Dalton ;
Helmerich, Luke ;
Firoozabadi, Abbas .
AICHE JOURNAL, 2008, 54 (02) :565-574
[3]  
[Anonymous], CLATHRATE HYDRATES N
[4]   Modeling the effects of hydrate wall deposition on slug flow hydrodynamics and heat transfer [J].
Bassani, Carlos L. ;
Barbuto, Fausto A. A. ;
Sum, Amadeu K. ;
Morales, Rigoberto E. M. .
APPLIED THERMAL ENGINEERING, 2017, 114 :245-254
[5]  
Camargo R., 2006, ANN NY ACAD SCI, V912, p906 916, DOI 10.1111/j.1749-6632.2000.tb06844.x
[6]  
Camargo R., 4 INT C GAS HYDR 202
[7]   Benefits and drawbacks of clathrate hydrates: a review of their areas of interest [J].
Chatti, I ;
Delahaye, A ;
Fournaison, L ;
Petitet, JP .
ENERGY CONVERSION AND MANAGEMENT, 2005, 46 (9-10) :1333-1343
[8]   A new approach to gas hydrate modelling [J].
Chen, GJ ;
Guo, TM .
CHEMICAL ENGINEERING JOURNAL, 1998, 71 (02) :145-151
[9]   Evaluation of Gas Hydrate Anti-agglomerant Based on Laser Measurement [J].
Chen, Jun ;
Wang, Yun-Fei ;
Sun, Chang-Yu ;
Li, Feng-Guang ;
Ren, Ning ;
Jia, Meng-Lei ;
Yan, Ke-Le ;
Lv, Yi-Ning ;
Liu, Bei ;
Ghen, Guang-Jin .
ENERGY & FUELS, 2015, 29 (01) :122-129
[10]   Particle size distribution of TBPB hydrates by focused beam reflectance measurement (FBRM) for secondary refrigeration application [J].
Clain, Pascal ;
Ndoye, Fatou Toutie ;
Delahaye, Anthony ;
Fournaison, Laurence ;
Lin, Wei ;
Dalmazzone, Didier .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2015, 50 :19-31