Orthogonal multiwavelets with optimum time-frequency resolution

被引:63
作者
Jiang, QT
机构
[1] Natl Univ Singapore, Dept Math, Singapore 117548, Singapore
[2] Peking Univ, Dept Math, Beijing 100871, Peoples R China
关键词
multifilter bank; optimum time-frequency resolution; orthogonal multiwavelet; scaling function;
D O I
10.1109/78.668540
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A procedure to design orthogonal multiwavelets with good time-frequency resolution is introduced, Formulas to compute the time-durations and the frequency - bandwidths of sealing functions and multiwavelets are obtained, Parameter expressions for the matrix coefficient of the multifilter banks that generate symmetric/antisymmetric scaling Functions and multiwavelets supported in [0, N] are presented For N = 2...., 6. Orthogonal multiwavelets with optimum time-frequency resolution are constructed, and some optimal multifilter hanks are provided.
引用
收藏
页码:830 / 844
页数:15
相关论文
共 32 条
[21]   NECESSARY AND SUFFICIENT CONDITIONS FOR CONSTRUCTING ORTHONORMAL WAVELET BASES [J].
LAWTON, WM .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (01) :57-61
[22]  
LEBRUN J, 1996, BALANCED MULTIWAVELE
[24]  
MICCHELLI C, 1996, REGULARITY MULTIWAVE
[25]  
MORRIS JM, 1995, P SOC PHOTO-OPT INS, V2491, P52, DOI 10.1117/12.205426
[26]  
PAPOULIS A, 1984, SIGNAL ANAL
[27]  
Plonka G, 1997, CONSTR APPROX, V13, P221
[28]   Wavelets and signal processing [J].
Rioul, Olivier ;
Vetterli, Martin .
IEEE SIGNAL PROCESSING MAGAZINE, 1991, 8 (04) :14-38
[29]  
SHEN Z, IN PRESS SOC IND APP
[30]   SHORT WAVELETS AND MATRIX DILATION EQUATIONS [J].
STRANG, G ;
STRELA, V .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (01) :108-115