Orthogonal multiwavelets with optimum time-frequency resolution

被引:63
作者
Jiang, QT
机构
[1] Natl Univ Singapore, Dept Math, Singapore 117548, Singapore
[2] Peking Univ, Dept Math, Beijing 100871, Peoples R China
关键词
multifilter bank; optimum time-frequency resolution; orthogonal multiwavelet; scaling function;
D O I
10.1109/78.668540
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A procedure to design orthogonal multiwavelets with good time-frequency resolution is introduced, Formulas to compute the time-durations and the frequency - bandwidths of sealing functions and multiwavelets are obtained, Parameter expressions for the matrix coefficient of the multifilter banks that generate symmetric/antisymmetric scaling Functions and multiwavelets supported in [0, N] are presented For N = 2...., 6. Orthogonal multiwavelets with optimum time-frequency resolution are constructed, and some optimal multifilter hanks are provided.
引用
收藏
页码:830 / 844
页数:15
相关论文
共 32 条
[1]  
[Anonymous], 1993, Ten Lectures of Wavelets
[2]   A study of orthonormal multi-wavelets [J].
Chui, CK ;
Lian, JA .
APPLIED NUMERICAL MATHEMATICS, 1996, 20 (03) :273-298
[3]  
COHEN A, IN PRESS J FOURIER A
[4]   THE STRUCTURE OF FINITELY GENERATED SHIFT-INVARIANT SPACES IN L(2)(R(D)) [J].
DEBOOR, C ;
DEVORE, RA ;
RON, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 119 (01) :37-78
[5]   Intertwining multiresolution analyses and the construction of piecewise-polynomial wavelets [J].
Donovan, GC ;
Geronimo, JS ;
Hardin, DP .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (06) :1791-1815
[6]   Construction of orthogonal wavelets using fractal interpolation functions [J].
Donovan, GC ;
Geronimo, JS ;
Hardin, DP ;
Massopust, PR .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (04) :1158-1192
[7]  
DORIZE C, 1991, P IEEE INT C AC SPEE, P2029
[8]  
Gabor D., 1946, Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, V93, P58, DOI [DOI 10.1049/JI-3-2.1946.0074, 10.1049/JI-3-2.1946.0074]
[9]   FRACTAL FUNCTIONS AND WAVELET EXPANSIONS BASED ON SEVERAL SCALING FUNCTIONS [J].
GERONIMO, JS ;
HARDIN, DP ;
MASSOPUST, PR .
JOURNAL OF APPROXIMATION THEORY, 1994, 78 (03) :373-401
[10]   WAVELETS IN WANDERING SUBSPACES [J].
GOODMAN, TNT ;
LEE, SL ;
TANG, WS .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 338 (02) :639-654