Activation of peroxymonosulfate by biochar-based catalysts and applications in the degradation of organic contaminants: A review

被引:353
作者
Zhao, Chenhui [1 ,2 ]
Shao, Binbin [1 ,2 ]
Yan, Ming [1 ,2 ]
Liu, Zhifeng [1 ,2 ]
Liang, Qinghua [1 ,2 ]
He, Qingyun [1 ,2 ]
Wu, Ting [1 ,2 ]
Liu, Yang [1 ,2 ]
Pan, Yuan [1 ,2 ]
Huang, Jing [1 ,2 ]
Wang, Jiajia [1 ,2 ]
Liang, Jie [1 ,2 ]
Tang, Lin [1 ,2 ]
机构
[1] Hunan Univ, Coll Environm Sci & Engn, Changsha 410082, Peoples R China
[2] Hunan Univ, Minist Educ, Key Lab Environm Biol & Pollut Control, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
Biochar-based catalysts; Peroxymonosulfate activation mechanisms; Organic contaminants; Advanced oxidation processes; PERSISTENT FREE-RADICALS; ADVANCED OXIDATION PROCESSES; REDUCED GRAPHENE OXIDE; DOPED POROUS CARBON; ZEROVALENT IRON COMPOSITE; LAYERED DOUBLE HYDROXIDES; SLUDGE-DERIVED BIOCHAR; WASTE-WATER TREATMENT; METAL-FREE CATALYST; HYDROTHERMAL CARBONIZATION;
D O I
10.1016/j.cej.2021.128829
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Sulfate radical-based advanced oxidation processes (SR-AOPs) have received intensively attention due to the ability and adaptability. Biochar-based catalysts have been regarded as the effective catalysts for activating peroxymonosulfate (PMS) to generate sulfate radicals (SO4?-). This article discussed the advance of the PMS activation by biochar-based catalysts. Firstly, the sources and synthesis methods of biochar-based catalysts have been discussed. Secondly, the different activation mechanisms (including radical pathways and non-radical pathways) of pristine biochar, heteroatom doping biochar and biochar composites catalysts for PMS activation are reviewed, respectively, which includes (i) the significant role of persistent radical (PFRs) and the special structures (defects and graphitization) of pristine biochar, (ii) the effects of element doping (especially N atom) and metal species on the biochar catalysts, (iii) the production mechanisms of reactive oxygen species (ROS) and special non-radical mechanism. Thirdly, the influences of PMS and catalysts concentration, temperature, pH, anions and natural organic matter (NOM) on the contaminants degradation process have been presented. Finally, the conclusion and prospects section discussed the challenges and possible future directions for the degradation of contaminants by biochar/PMS systems. This review is expected to provide new ideas for the application of biochar-based catalysts and broaden the ways for the removal of organic contaminants.
引用
收藏
页数:17
相关论文
共 195 条
[1]  
Abing D., 2019, CRIT REV BIOTECHNOL, V39
[2]   Combination of UVC-LEDs and ultrasound for peroxymonosulfate activation to degrade synthetic dye: influence of promotional and inhibitory agents and application for real wastewater [J].
Ahmadi, Mehdi ;
Ghanbari, Farshid .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2018, 25 (06) :6003-6014
[3]   Fabrication and enhanced CO2 reduction performance of N-self-doped TiO2 microsheet photocatalyst by bi-cocatalyst modification [J].
Akple, Maxwell Selase ;
Low, Jingxiang ;
Liu, Shengwei ;
Cheng, Bei ;
Yu, Jiaguo ;
Ho, Wingkei .
JOURNAL OF CO2 UTILIZATION, 2016, 16 :442-449
[4]   Biochar applications and modern techniques for characterization [J].
Amin, Farrukh Raza ;
Huang, Yan ;
He, Yanfeng ;
Zhang, Ruihong ;
Liu, Guangqing ;
Chen, Chang .
CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY, 2016, 18 (05) :1457-1473
[5]   Comparison of activation media and pyrolysis temperature for activated carbons development by pyrolysis of potato peels for effective adsorption of endocrine disruptor bisphenol-A [J].
Arampatzidou, Anastasia C. ;
Deliyanni, Eleni A. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2016, 466 :101-112
[6]   Covalent surface chemistry of single-walled carbon nanotubes [J].
Banerjee, S ;
Hemraj-Benny, T ;
Wong, SS .
ADVANCED MATERIALS, 2005, 17 (01) :17-29
[7]  
Brandt A, 2015, GREEN CHEM, V17, P5019, DOI [10.1039/C5GC01314C, 10.1039/c5gc01314c]
[8]   CO2 as a Carhon Neutral Fuel Source via Enhanced Biomass Gasification [J].
Butterman, Heidi C. ;
Castaldi, Marco J. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (23) :9030-9037
[9]   Nitrogen-, phosphorous- and boron-doped carbon nanotubes as catalysts for the aerobic oxidation of cyclohexane [J].
Cao, Yonghai ;
Yu, Hao ;
Tan, Jun ;
Peng, Feng ;
Wang, Hongjuan ;
Li, Jing ;
Zheng, Wenxu ;
Wong, Ning-Bew .
CARBON, 2013, 57 :433-442
[10]   Production and utilization of biochar: A review [J].
Cha, Jin Sun ;
Park, Sung Hoon ;
Jung, Sang-Chul ;
Ryu, Changkook ;
Jeon, Jong-Ki ;
Shin, Min-Chul ;
Park, Young-Kwon .
JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2016, 40 :1-15