Secondary aerosol formation alters CCN activity in the North China Plain

被引:17
作者
Tao, Jiangchuan [1 ,2 ]
Kuang, Ye [1 ,2 ]
Ma, Nan [1 ,2 ]
Hong, Juan [1 ,2 ]
Sun, Yele [3 ,4 ,5 ]
Xu, Wanyun [6 ]
Zhang, Yanyan [1 ]
He, Yao [3 ]
Luo, Qingwei [1 ]
Xie, Linhong [1 ,2 ]
Su, Hang [7 ]
Cheng, Yafang [7 ]
机构
[1] Jinan Univ, Inst Environm & Climate Res, Guangzhou 511443, Guangdong, Peoples R China
[2] Guangdong Hongkong Macau Joint Lab Collaborat Inn, Guangzhou, Peoples R China
[3] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Atmospher Boundary Layer Phys & Atm, Beijing 100029, Peoples R China
[4] Univ Chinese Acad Sci, Coll Earth & Planetary Sci, Beijing 100049, Peoples R China
[5] Chinese Acad Sci, Ctr Excellence Reg Atmospher Environm, Inst Urban Environm, Xiamen 361021, Peoples R China
[6] Chinese Acad Meteorol Sci, Inst Atmospher Composit, State Key Lab Severe Weather, Key Lab Atmospher Chem, Beijing 00081, Peoples R China
[7] Max Planck Inst Chem, Multiphase Chem Dept, D-55128 Mainz, Germany
基金
中国国家自然科学基金;
关键词
CLOUD CONDENSATION NUCLEI; ORGANIC AEROSOL; CHEMICAL-COMPOSITION; PARTICLE FORMATION; ACTIVATION PROPERTIES; HYGROSCOPIC GROWTH; MIXING STATE; SIZE DISTRIBUTIONS; PRD REGION; URBAN;
D O I
10.5194/acp-21-7409-2021
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Secondary aerosols (SAs, including secondary organic and inorganic aerosols, SOAs and SIAs) are predominant components of aerosol particles in the North China Plain (NCP), and their formation has significant impacts on the evolution of particle size distribution (PNSD) and hygroscopicity. Previous studies have shown that distinct SA formation mechanisms can dominate under different relative humidity (RH). This would lead to different influences of SA formation on the aerosol hygroscopicity and PNSD under different RH conditions. Based on the measurements of size-resolved particle activation ratio (SPAR), hygroscopicity distribution (GF-PDF), PM2.5 chemical composition, PNSD, meteorology and gaseous pollutants in a recent field campaign, McFAN (Multiphase chemistry experiment in Fogs and Aerosols in the North China Plain), conducted during the autumn-winter transition period in 2018 at a polluted rural site in the NCP, the influences of SA formation on cloud condensation nuclei (CCN) activity and CCN number concentration (N-CCN) calculation under different RH conditions were studied. Results suggest that during daytime, SA formation could lead to a significant increase in N-CCN and a strong diurnal variation in SPAR at supersaturations lower than 0.07 %. During periods with daytime minimum RH exceeding 50% (high RH conditions), SA formation significantly contributed to the particle mass and size changes in a broad size range of 150 to 1000 nm, leading to N-CCN (0.05 %) increases within the size range of 200 to 500 nm and mass concentration growth mainly for particles larger than 300 nm. During periods with daytime minimum RH below 30% (low RH conditions), SA formation mainly contributed to the particle mass and size and N-CCN changes for particles smaller than 300 nm. As a result, under the same amount of mass increase induced by SA formation, the increase of N-CCN (0.05 %) was stronger under low RH conditions and weaker under high RH conditions. Moreover, the diurnal variations of the SPAR parameter (inferred from CCN measurements) due to SA formation varied with RH conditions, which was one of the largest uncertainties within N-CCN predictions. After considering the SPAR parameter (estimated through the number fraction of hygroscopic particles or mass fraction of SA), the relative deviation of N-CCN (0.05 %) predictions was reduced to within 30 %. This study highlights the impact of SA formation on CCN activity and N-CCN calculation and provides guidance for future improvements of CCN predictions in chemical-transport models and climate models.
引用
收藏
页码:7409 / 7427
页数:19
相关论文
共 73 条
[1]   The size-resolved cloud condensation nuclei (CCN) activity and its prediction based on aerosol hygroscopicity and composition in the Pearl Delta River (PRD) region during wintertime 2014 [J].
Cai, Mingfu ;
Tan, Haobo ;
Chan, Chak K. ;
Qin, Yiming ;
Xu, Hanbing ;
Li, Fei ;
Schurman, Misha I. ;
Liu, Li ;
Zhao, Jun .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (22) :16419-16437
[2]   The hygroscopicity parameter (κ) of ambient organic aerosol at a field site subject to biogenic and anthropogenic influences: relationship to degree of aerosol oxidation [J].
Chang, R. Y-W. ;
Slowik, J. G. ;
Shantz, N. C. ;
Vlasenko, A. ;
Liggio, J. ;
Sjostedt, S. J. ;
Leaitch, W. R. ;
Abbatt, J. P. D. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (11) :5047-5064
[3]   Prediction of size-resolved number concentration of cloud condensation nuclei and long-term measurements of their activation characteristics [J].
Che, H. C. ;
Zhang, X. Y. ;
Zhang, L. ;
Wang, Y. Q. ;
Zhang, Y. M. ;
Shen, X. J. ;
Ma, Q. L. ;
Sun, J. Y. ;
Zhong, J. T. .
SCIENTIFIC REPORTS, 2017, 7
[4]   Size-resolved measurement of the mixing state of soot in the megacity Beijing, China: diurnal cycle, aging and parameterization [J].
Cheng, Y. F. ;
Su, H. ;
Rose, D. ;
Gunthe, S. S. ;
Berghof, M. ;
Wehner, B. ;
Achtert, P. ;
Nowak, A. ;
Takegawa, N. ;
Kondo, Y. ;
Shiraiwa, M. ;
Gong, Y. G. ;
Shao, M. ;
Hu, M. ;
Zhu, T. ;
Zhang, Y. H. ;
Carmichael, G. R. ;
Wiedensohler, A. ;
Andreae, M. O. ;
Poeschl, U. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (10) :4477-4491
[5]   Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China [J].
Cheng, Yafang ;
Zheng, Guangjie ;
Wei, Chao ;
Mu, Qing ;
Zheng, Bo ;
Wang, Zhibin ;
Gao, Meng ;
Zhang, Qiang ;
He, Kebin ;
Carmichael, Gregory ;
Poschl, Ulrich ;
Su, Hang .
SCIENCE ADVANCES, 2016, 2 (12)
[6]  
Dal Maso M, 2005, BOREAL ENVIRON RES, V10, P323
[7]   Size-resolved and bulk activation properties of aerosols in the North China Plain [J].
Deng, Z. Z. ;
Zhao, C. S. ;
Ma, N. ;
Liu, P. F. ;
Ran, L. ;
Xu, W. Y. ;
Chen, J. ;
Liang, Z. ;
Liang, S. ;
Huang, M. Y. ;
Ma, X. C. ;
Zhang, Q. ;
Quan, J. N. ;
Yan, P. ;
Henning, S. ;
Mildenberger, K. ;
Sommerhage, E. ;
Schaefer, M. ;
Stratmann, F. ;
Wiedensohler, A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (08) :3835-3846
[8]   Aerosols-cloud microphysics-thermodynamics-turbulence: evaluating supersaturation in a marine stratocumulus cloud [J].
Ditas, F. ;
Shaw, R. A. ;
Siebert, H. ;
Simmel, M. ;
Wehner, B. ;
Wiedensohler, A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (05) :2459-2468
[9]   Influence of pollutants on activity of aerosol cloud condensation nuclei (CCN) during pollution and post-rain periods in Guangzhou, southern China [J].
Duan, Junyan ;
Wang, Yanyu ;
Xie, Xin ;
Li, Mei ;
Tao, Jun ;
Wu, Yunfei ;
Cheng, Tiantao ;
Zhang, Renjian ;
Liu, Yuehui ;
Li, Xiang ;
He, Qianshan ;
Gao, Wei ;
Wang, Jianpeng .
SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 642 :1008-1019
[10]   Size matters more than chemistry for cloud-nucleating ability of aerosol particles [J].
Dusek, U. ;
Frank, G. P. ;
Hildebrandt, L. ;
Curtius, J. ;
Schneider, J. ;
Walter, S. ;
Chand, D. ;
Drewnick, F. ;
Hings, S. ;
Jung, D. ;
Borrmann, S. ;
Andreae, M. O. .
SCIENCE, 2006, 312 (5778) :1375-1378