On the crack onset and growth in martensitic micro-structures; a phase-field approach

被引:22
|
作者
Farahani, E. Borzabadi [1 ]
Aragh, B. Sobhani [2 ]
Voges, J. [1 ]
Juhre, D. [1 ]
机构
[1] Otto von Guericke Univ, Fac Mech Engn, Inst Mech, Univ Pl 2, D-39106 Magdeburg, Germany
[2] Tech Univ Darmstadt, Dept Mat Sci, Mech Funct Mat Div, D-64287 Darmstadt, Germany
关键词
Martensitic phase transformation; Phase field approach; Multi-variant; Fracture mechanics; Finite element method; Crack propagation; FINITE-ELEMENT-METHOD; TRANSFORMATION INDUCED PLASTICITY; BRITTLE-FRACTURE; SIMULATION; MODEL; PROPAGATION; DEFORMATION; NUCLEATION; STRESS;
D O I
10.1016/j.ijmecsci.2020.106187
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this work, a phase-field approach (PFA) is presented to study crack nucleation and propagation in martensitic micro-structures resulted from multi-variant martensitic phase transformations (MPT) within the framework of a finite element method (FEM). To this end, first, a coupled system of the time-dependent Ginzburg-Landau (TDGL) equation and the equilibrium equation is established based on the micro-elasticity theory, which reveals the nucleation and growth of diffusionless martensitic multi-variants forming a twinned martensitic micro-structure. The Helmholtz free energy used in this work consists of a second-degree polynomial of the phase variable, which leads to a nonlinear dependence on the order parameter in the TGDL equation. Thereafter, the nucleation and propagation of a crack is scrutinized in the obtained martensitic specimen, with and without pre-existing crack, according to three types of martensitic embryos. To do so, a damage variable is introduced to the multi-variant MPT model to study the interactions between the martensitic transformation and fracture. The key contributions of this study are not only to shed light on the evolution of the martensitic variants in the micro-structure with three types of pre-existing martensitic embryos, but also to investigate onset and growth of a crack in the martensitic specimen.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Phase-field modeling of crack growth and interaction in rock
    Xu, Bin
    Xu, Tao
    Xue, Yanchao
    Heap, Michael J.
    Ranjith, P. G.
    Wasantha, P. L. P.
    Li, Zhiguo
    GEOMECHANICS AND GEOPHYSICS FOR GEO-ENERGY AND GEO-RESOURCES, 2022, 8 (06)
  • [2] A combined XFEM phase-field computational model for crack growth without remeshing
    Muixi, Alba
    Marco, Onofre
    Rodriguez-Ferran, Antonio
    Fernandez-Mendez, Sonia
    COMPUTATIONAL MECHANICS, 2021, 67 (01) : 231 - 249
  • [3] Phase-field approach to martensitic phase transformations: Effect of martensite-martensite interface energy
    Levitas, Valery I.
    Javanbakht, Mandi
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2011, 102 (06) : 652 - 665
  • [4] A multiscale preconditioner for crack evolution in porous microstructures: Accelerating phase-field methods
    Li, Kangan
    Mehmani, Yashar
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2024, 125 (11)
  • [5] Phase-field simulation of stress-induced martensitic phase transformations at large strains
    Levin, Vladimir A.
    Levitas, Valery I.
    Zingerman, Konstantin M.
    Freiman, Eugene I.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2013, 50 (19) : 2914 - 2928
  • [6] Phase-field models for fatigue crack growth
    Mesgarnejad, A.
    Imanian, A.
    Karma, A.
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2019, 103
  • [7] Phase-field finite element modelling of creep crack growth in martensitic steels
    Ragab, Raheeg
    Sun, Wei
    Li, Ming
    Liu, Tao
    ENGINEERING FRACTURE MECHANICS, 2024, 310
  • [8] Phase-field modeling of crack propagation in polycrystalline materials
    Emdadi, Arezoo
    Zaeem, Mohsen Asle
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 186
  • [9] Crack propagation in functionally graded 2D structures: A finite element phase-field study
    Torabi, J.
    Ansari, R.
    THIN-WALLED STRUCTURES, 2020, 151
  • [10] An optimization-based phase-field method for continuous-discontinuous crack propagation
    Geelen, Rudy J. M.
    Liu, Yingjie
    Dolbow, John E.
    Rodriguez-Ferran, Antonio
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 116 (01) : 1 - 20