P4S10 modified lithium anode for enhanced performance of lithium-sulfur batteries

被引:26
作者
Li, Meng [2 ,3 ]
Liu, Xiaojun [1 ]
Li, Qian [4 ]
Jin, Zhaoqing [3 ]
Wang, Weikun [3 ]
Wang, Anbang [3 ]
Huang, Yaqin [1 ]
Yang, Yusheng [3 ]
机构
[1] Beijing Univ Chem Technol, Dept Mat Sci & Engn, Beijing 100029, Peoples R China
[2] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[3] Res Inst Chem Def, Mil Power Sources Res & Dev Ctr, Beijing 100191, Peoples R China
[4] Wanhua Chem Grp Co Ltd, Yantai 264000, Shandong, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2020年 / 41卷
关键词
Lithium metal anode; Ex-situ protective layer; LixPySz; Lithium-sulfur batteries; SOLID-ELECTROLYTE INTERPHASE; REDUCED GRAPHENE OXIDE; METAL ANODE; COMPOSITE ANODE; LAYER; CONDUCTIVITY; DEGRADATION; MECHANISM; LI7P3S11; CATHODE;
D O I
10.1016/j.jechem.2019.03.038
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
To address the corrosion and dendrite issues of lithium metal anodes, a protective layer was ex-situ constructed by P4S10 modification. It was determined by X-ray photoelectron spectroscopy and Raman spectra that the main constituents of the protective layer were P4S10, Li3PS4 and other LixPySz type derivatives. The protective layer was proved to be effective to stabilize the interphase of lithium metal. With the modified Li anodes, symmetric cells could deliver stable Li plating/stripping for 16000 h; Li-S batteries exhibited a specific capacity of 520 mA h g(-1) after 200 cycles at 1000 mA g(-1) with average Coulombic efficiency of 97.9%. Therefore, introducing LixPySz based layer to protect Li anode provides a new strategy for the improvement of Li metal batteries. (C) 2019 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
引用
收藏
页码:27 / 33
页数:7
相关论文
共 55 条
[1]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[2]   Anodes for Rechargeable Lithium-Sulfur Batteries [J].
Cao, Ruiguo ;
Xu, Wu ;
Lv, Dongping ;
Xiao, Jie ;
Zhang, Ji-Guang .
ADVANCED ENERGY MATERIALS, 2015, 5 (16)
[3]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[4]   A Review of Solid Electrolyte Interphases on Lithium Metal Anode [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Wei, Fei ;
Zhang, Ji-Guang ;
Zhang, Qiang .
ADVANCED SCIENCE, 2016, 3 (03)
[5]   A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles [J].
Choudhury, Snehashis ;
Mangal, Rahul ;
Agrawal, Akanksha ;
Archer, Lynden A. .
NATURE COMMUNICATIONS, 2015, 6
[6]   Synthesis, Structural Characterization, and Lithium Ion Conductivity of the Lithium Thiophosphate Li2P2S6 [J].
Dietrich, Christian ;
Weber, Dominik A. ;
Culver, Sean ;
Senyshyn, Anatoliy ;
Sedlmaier, Stefan J. ;
Indris, Sylvio ;
Janek, Juergen ;
Zeier, Wolfgang G. .
INORGANIC CHEMISTRY, 2017, 56 (11) :6681-6687
[7]  
GARDNER M, 1973, J CHEM SOC DALTON, P691
[8]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[9]   Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries [J].
Guo, Yanpeng ;
Li, Huiqiao ;
Zhai, Tianyou .
ADVANCED MATERIALS, 2017, 29 (29)
[10]   Preparation and ionic conductivity of Li7P3S11 - z glass-ceramic electrolytes [J].
Hayashi, Akitoshi ;
Minami, Keiichi ;
Ujiie, Satoshi ;
Tatsumisago, Masahiro .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2010, 356 (44-49) :2670-2673