Enhanced Atmospheric Pressure Plasma Jet Performance by an Alternative Dielectric Barrier Discharge Configuration

被引:11
作者
Duc Ba Nguyen [1 ,2 ]
Mok, Young Sun [1 ]
Lee, Won Gyu [3 ]
机构
[1] Jeju Natl Univ, Dept Chem & Biol Engn, Jeju 63243, South Korea
[2] Duy Tan Univ, Ctr Adv Chem, Inst Res & Dev, Da Nang 550000, Vietnam
[3] Kangwon Natl Univ, Div Chem Engn & Bioengn, Chunchon 24341, South Korea
基金
新加坡国家研究基金会;
关键词
Atmospheric pressure plasma jet (APPJ); coplanar-coaxial dielectric barrier discharge (DBD); DBD plasma jet; two-ring electrodes;
D O I
10.1109/TPS.2019.2896666
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A conventional coplanar-coaxial dielectric barrier discharge is operated with two-ring electrodes exposed to the atmosphere; however, this condition can potentially generate sparks between the electrodes. Here, we showed that sparks between the electrodes were avoided by completely covering the electrodes in the electrical insulation. This new configuration provided a high-level performance in generating a plasma jet in comparison with the configuration with the electrodes exposed to the atmosphere, i.e., it provided a stable discharge and long-plasma plume, reduced discharge power, and increased the range of applied voltage. A short distance between the electrodes and the ground electrode led to an extended jet length and a reduced jet temperature. This is a promising plasma jet source for various applications in that excited species are present in the jet and the emission of NOx and CO is low.
引用
收藏
页码:4795 / 4801
页数:7
相关论文
共 28 条
[1]  
[Anonymous], 1976, IDENTIFICATION MOL S
[2]   Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments [J].
Brandenburg, Ronny .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2017, 26 (05)
[3]   Plasma-liquid interactions: a review and roadmap [J].
Bruggeman, P. J. ;
Kushner, M. J. ;
Locke, B. R. ;
Gardeniers, J. G. E. ;
Graham, W. G. ;
Graves, D. B. ;
Hofman-Caris, R. C. H. M. ;
Maric, D. ;
Reid, J. P. ;
Ceriani, E. ;
Rivas, D. Fernandez ;
Foster, J. E. ;
Garrick, S. C. ;
Gorbanev, Y. ;
Hamaguchi, S. ;
Iza, F. ;
Jablonowski, H. ;
Klimova, E. ;
Kolb, J. ;
Krcma, F. ;
Lukes, P. ;
Machala, Z. ;
Marinov, I. ;
Mariotti, D. ;
Thagard, S. Mededovic ;
Minakata, D. ;
Neyts, E. C. ;
Pawlat, J. ;
Petrovic, Z. Lj ;
Pflieger, R. ;
Reuter, S. ;
Schram, D. C. ;
Schroter, S. ;
Shiraiwa, M. ;
Tarabova, B. ;
Tsai, P. A. ;
Verlet, J. R. R. ;
von Woedtke, T. ;
Wilson, K. R. ;
Yasui, K. ;
Zvereva, G. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2016, 25 (05)
[4]   Effects of self-heating in a dielectric barrier discharge reactor on CHF3 decomposition [J].
Duc Ba Nguyen ;
Lee, Won Gyu .
CHEMICAL ENGINEERING JOURNAL, 2016, 294 :58-64
[5]   Effect of ambient condition for coaxial dielectric barrier discharge reactor on CO2 reforming of CH4 to syngas [J].
Duc Ba Nguyen ;
Lee, Won Gyu .
JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2014, 20 (03) :972-978
[6]   Atmospheric pressure plasma jet: Effect of electrode configuration, discharge behavior, and its formation mechanism [J].
Jiang, Nan ;
Ji, Ailing ;
Cao, Zexian .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (01)
[7]   Plasma for cancer treatment [J].
Keidar, Michael .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2015, 24 (03)
[8]   Room-temperature atmospheric pressure plasma plume for biomedical applications [J].
Laroussi, M ;
Lu, X .
APPLIED PHYSICS LETTERS, 2005, 87 (11)
[9]   Effects of gas flow rate on the length of atmospheric pressure nonequilibrium plasma jets [J].
Li, Qing ;
Li, Jiang-Tao ;
Zhu, Wen-Chao ;
Zhu, Xi-Ming ;
Pu, Yi-Kang .
APPLIED PHYSICS LETTERS, 2009, 95 (14)
[10]   Electrical characteristics and formation mechanism of atmospheric pressure plasma jet [J].
Liu, Lijuan ;
Zhang, Yu ;
Tian, Weijing ;
Meng, Ying ;
Ouyang, Jiting .
APPLIED PHYSICS LETTERS, 2014, 104 (24)