Stable Carbon-Selenium Bonds for Enhanced Performance in Tremella-Like 2D Chalcogenide Battery Anode

被引:118
作者
Li, Yu [1 ]
Xu, Yahong [2 ]
Wang, Zhaohua [1 ]
Bai, Ying [1 ]
Zhang, Kai [2 ,3 ]
Dong, Ruiqi [1 ]
Gao, Yaning [1 ]
Ni, Qiao [1 ]
Wu, Feng [1 ,4 ]
Liu, Yijin [2 ]
Wu, Chuan [1 ,4 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Key Lab Environm Sci & Engn, Beijing 100081, Peoples R China
[2] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA
[3] Chinese Acad Sci, Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing 100049, Peoples R China
[4] Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China
关键词
carbon-selenium bonds; cobalt selenide; lithium-ion batteries; Se dissolution; sodium-ion batteries; LITHIUM-ION BATTERIES; REDUCED GRAPHENE OXIDE; LONG-CYCLE-LIFE; FESE2; MICROSPHERES; CATHODE MATERIAL; SODIUM; STORAGE; HYBRID; RICH; NANOOCTAHEDRA;
D O I
10.1002/aenm.201800927
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
2D cobalt selenide based on conversion reaction has attracted much attention due to its open layered structure and high specific capacity. However, effectively suppressing the fast capacity fade caused by the irreversible Se dissolution and serious volume change during the cycling process is still a challenge. Herein, the concentration of dispersion liquid under supercritical conditions is tuned to induce the CoSe crystal to grow along the graphene oxide (GO), and finally obtain the Tremella-like CoSe-reduced GO (rGO) hybrid. The nature of epitaxial growth leads to the formation of stable C-Se bonds, which maintain a favorable conductive connection between CoSe and rGO as well as enhance the mechanical strength of active materials to suppress Se dissolution and volume expansion during Na/Li intercalation and deintercalation. The unique microstructural merits of the hybrid result in superior sodium/lithium storage performance (400.8 mAh g(-1) at 1 A g(-1) after 100 cycles for sodium-ion batteries and 769.6 mAh g(-1) at 2 A g(-1) after 500 cycles for lithium-ion batteries). Moreover, the transmission X-ray microscopy technique is first used to directly observe the Se segregation in cobalt selenide and it being suppressed by the C-Se bonds.
引用
收藏
页数:8
相关论文
共 46 条
[1]   Mille-feuille shaped hard carbons derived from polyvinylpyrrolidone via environmentally friendly electrostatic spinning for sodium ion battery anodes [J].
Bai, Ying ;
Liu, Yuanchang ;
Li, Yu ;
Ling, Liming ;
Wu, Feng ;
Wu, Chuan .
RSC ADVANCES, 2017, 7 (09) :5519-5527
[2]   Hard Carbon Originated from Polyvinyl Chloride Nanofibers As High-Performance Anode Material for Na-Ion Battery [J].
Bai, Ying ;
Wang, Zhen ;
Wu, Chuan ;
Xu, Rui ;
Wu, Feng ;
Liu, Yuanchang ;
Li, Hui ;
Li, Yu ;
Lu, Jun ;
Amine, Khalil .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (09) :5598-5604
[3]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192
[4]   Graphitic Carbon-Coated FeSe2 Hollow Nanosphere-Decorated Reduced Graphene Oxide Hybrid Nanofibers as an Efficient Anode Material for Sodium Ion Batteries [J].
Cho, Jung Sang ;
Lee, Jung-Kul ;
Kang, Yun Chan .
SCIENTIFIC REPORTS, 2016, 6
[5]   First Introduction of NiSe2 to Anode Material for Sodium-Ion Batteries: A Hybrid of Graphene-Wrapped NiSe2/C Porous Nanofiber [J].
Cho, Jung Sang ;
Lee, Seung Yeon ;
Kang, Yun Chan .
SCIENTIFIC REPORTS, 2016, 6
[6]   Fullerene-like MoSe2 nanoparticles-embedded CNT balls with excellent structural stability for highly reversible sodium-ion storage [J].
Choi, Seung Ho ;
Kang, Yun Chan .
NANOSCALE, 2016, 8 (07) :4209-4216
[7]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[8]   Ionic Liquid Enabled FeS2 for High-Energy-Density Lithium-Ion Batteries [J].
Evans, Tyler ;
Piper, Daniela Molina ;
Kim, Seul Cham ;
Han, Sang Sub ;
Bhat, Vinay ;
Oh, Kyu Hwan ;
Lee, Se-Hee .
ADVANCED MATERIALS, 2014, 26 (43) :7386-7392
[9]   Synthesis of 2D-Mesoporous-Carbon/MoS2 Heterostructures with Well-Defined Interfaces for High-Performance Lithium-Ion Batteries [J].
Fang, Yin ;
Lv, Yingying ;
Gong, Feng ;
Elzatahry, Ahmed A. ;
Zheng, Gengfeng ;
Zhao, Dongyuan .
ADVANCED MATERIALS, 2016, 28 (42) :9385-+
[10]   Unusual Formation of CoSe@carbon Nanoboxes, which have an Inhomogeneous Shell, for Efficient Lithium Storage [J].
Hu, Han ;
Zhang, Jintao ;
Guan, Buyuan ;
Lou, Xiong Wen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (33) :9514-9518