ROBUST SOLUTIONS OF MULTIOBJECTIVE LINEAR SEMI-INFINITE PROGRAMS UNDER CONSTRAINT DATA UNCERTAINTY

被引:48
作者
Goberna, M. A. [1 ]
Jeyakumar, V. [2 ]
Li, G. [2 ]
Vicente-Perez, J. [2 ]
机构
[1] Univ Alicante, Dept Stat & Operat Res, E-03080 Alicante, Spain
[2] Univ New S Wales, Dept Appl Math, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
linear semi-infinite programming; linear multiobjective optimization; robust optimization; duality; ILL-POSEDNESS; DUALITY; CONVEX; DISTANCE;
D O I
10.1137/130939596
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The multiobjective optimization model studied in this paper deals with simultaneous minimization of finitely many linear functions subject to an arbitrary number of uncertain linear constraints. We first provide a radius of robust feasibility guaranteeing the feasibility of the robust counterpart under affine data parametrization. We then establish dual characterizations of robust solutions of our model that are immunized against data uncertainty by way of characterizing corresponding solutions of robust counterpart of the model. Consequently, we present robust duality theorems relating the value of the robust model with the corresponding value of its dual problem.
引用
收藏
页码:1402 / 1419
页数:18
相关论文
共 16 条
  • [1] [Anonymous], 2005, MULTICRITERIA OPTIMI
  • [2] Duality in robust optimization: Primal worst equals dual best
    Beck, Amir
    Ben-Tal, Aharon
    [J]. OPERATIONS RESEARCH LETTERS, 2009, 37 (01) : 1 - 6
  • [3] BenTal A, 2009, PRINC SER APPL MATH, P1
  • [4] Robust Duality in Parametric Convex Optimization
    Bot, R. I.
    Jeyakumar, V.
    Li, G. Y.
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2013, 21 (02) : 177 - 189
  • [5] Bot RI, 2009, VECTOR OPTIM, P1, DOI 10.1007/978-3-642-02886-1_1
  • [6] Distance to ill-posedness for linear inequality systems under block perturbations: convex and infinite-dimensional cases
    Canovas, M. J.
    Lopez, M. A.
    Parra, J.
    Toledo, F. J.
    [J]. OPTIMIZATION, 2011, 60 (07) : 925 - 946
  • [7] Distance to ill-posedness and the consistency value of linear semi-infinite inequality systems
    Cánovas, MJ
    López, MA
    Parra, J
    Toledo, FJ
    [J]. MATHEMATICAL PROGRAMMING, 2005, 103 (01) : 95 - 126
  • [8] Robust solutions to multi-objective linear programs with uncertain data
    Goberna, M. A.
    Jeyakumar, V.
    Li, G.
    Vicente-Perez, J.
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2015, 242 (03) : 730 - 743
  • [9] Robust linear semi-infinite programming duality under uncertainty
    Goberna, M. A.
    Jeyakumar, V.
    Li, G.
    Lopez, M. A.
    [J]. MATHEMATICAL PROGRAMMING, 2013, 139 (1-2) : 185 - 203
  • [10] Constraint qualifications in linear vector semi-infinite optimization
    Goberna, M. A.
    Guerra-Vazquez, F.
    Todorov, M. I.
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2013, 227 (01) : 12 - 21