Existence, regularity, and concentration phenomenon of nontrivial solitary waves for a class of generalized variable coefficient Kadomtsev-Petviashvili equation

被引:7
作者
Alves, Claudianor O. [1 ]
Miyagaki, Olimpio H. [2 ]
机构
[1] Univ Fed Campina Grande, Unidade Acad Matemat, BR-58429900 Campina Grande, PB, Brazil
[2] Univ Fed Juiz de Fora, Dept Matemat, BR-36036330 Juiz De Fora, MG, Brazil
关键词
NONLINEAR SCHRODINGER-EQUATIONS; ELLIPTIC PROBLEMS; R-N; CRITICAL GROWTH; BOUND-STATES; MULTIPLICITY; ALGEBRA; STRAITS; DEPTH;
D O I
10.1063/1.4997014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we establish some results concerning the existence, regularity, and concentration phenomenon of nontrivial solitary waves for a class of generalized variable coefficient Kadomtsev-Petviashvili equation. Variational methods are used to get an existence result, as well as, to study the concentration phenomenon, while the regularity is more delicate because we are leading with functions in an anisotropic Sobolev space. Published by AIP Publishing.
引用
收藏
页数:18
相关论文
共 43 条
[1]  
Alves CO, 2006, DIFFER INTEGRAL EQU, V19, P143
[2]  
Alves CO, 2016, CALC VAR PARTIAL DIF, V55, DOI 10.1007/s00526-016-0983-x
[3]  
Alves CO, 2002, COMMUN PURE APPL ANA, V1, P417
[4]   Local mountain-pass for a class of elliptic problems in RN involving critical growth [J].
Alves, CO ;
do O, JM ;
Souto, MAS .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 46 (04) :495-510
[5]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[6]  
[Anonymous], 1997, Minimax theorems
[7]  
[Anonymous], 1970, Izv. Akad. Nauk SSSR Ser. Mat.
[8]   Nonlinear Schrodinger equations with steep potential well [J].
Bartsch, T ;
Pankov, A ;
Wang, ZQ .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (04) :549-569
[9]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[10]  
Besov OV., 1978, INTEGRAL REPRESENTAT, VI