Noncommutative Brownian motion

被引:5
作者
Santos, Willien O. [1 ]
Almeida, Guilherme M. A. [2 ,3 ]
Souza, Andre M. C. [4 ]
机构
[1] Univ Fed Reconcavo Bahia, Colegiado Fis, BR-45300000 Amargosa, BA, Brazil
[2] Univ Fed Alagoas, Inst Fis, BR-57072900 Maceio, AL, Brazil
[3] Univ Fed Minas Gerais, Dept Fis, Caixa Postal 701, BR-30161970 Belo Horizonte, MG, Brazil
[4] Univ Fed Sergipe, Dept Fis, BR-49100000 Sao Cristovao, SE, Brazil
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2017年 / 32卷 / 23-24期
关键词
Noncommutative geometry; classical mechanics; Brownian motion; INSTANTANEOUS VELOCITY; HYDROGEN-ATOM; GEOMETRY; GRAVITY;
D O I
10.1142/S0217751X17501469
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We investigate the classical Brownian motion of a particle in a two-dimensional non commutative (NC) space. Using the standard NC algebra embodied by the symplectic Weyl-Moyal formalism we find that noncommutativity induces a nonvanishing correlation between both coordinates at different times. The effect stands out as a signature of spatial noncommutativity and thus could offer a way to experimentally detect the phenomena. We further discuss some limiting scenarios and the trade-off between the scale imposed by the NC structure and the parameters of the Brownian motion itself.
引用
收藏
页数:9
相关论文
共 53 条
[1]   Noncommutative cosmological models coupled to a perfect fluid and a cosmological constant [J].
Abreu, E. M. C. ;
Marcial, M. V. ;
Mendes, A. C. R. ;
Oliveira, W. ;
Oliveira-Neto, G. .
JOURNAL OF HIGH ENERGY PHYSICS, 2012, (05)
[2]   Analytical and numerical analysis of a rotational invariant D=2 harmonic oscillator in the light of different noncommutative phase-space configurations [J].
Abreu, Everton M. C. ;
Marcial, Mateus V. ;
Mendes, Albert C. R. ;
Oliveira, Wilson .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (11)
[3]  
[Anonymous], 1999, Journal of High Energy Physics
[4]   THE NONCOMMUTATIVE GEOMETRY OF THE QUANTUM HALL-EFFECT [J].
BELLISSARD, J ;
VANELST, A ;
SCHULZBALDES, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (10) :5373-5451
[5]   Short distance versus long distance physics: The classical limit of the minimal length uncertainty relation [J].
Benczik, S ;
Chang, LN ;
Minic, D ;
Okamura, N ;
Rayyan, S ;
Takeuchi, T .
PHYSICAL REVIEW D, 2002, 66 (02) :1
[6]   Probing phase-space noncommutativity through quantum beating, missing information, and the thermodynamic limit [J].
Bernardini, A. E. ;
Bertolami, O. .
PHYSICAL REVIEW A, 2013, 88 (01)
[7]   Noncommutative gravitational quantum well -: art. no. 025010 [J].
Bertolami, O ;
Rosa, JG ;
de Aragao, CML ;
Castorina, P ;
Zappalà, D .
PHYSICAL REVIEW D, 2005, 72 (02) :1-9
[8]   Noncommutative field theory and Lorentz violation [J].
Carroll, SM ;
Harvey, JA ;
Kostelecky, VA ;
Lane, CD ;
Okamoto, T .
PHYSICAL REVIEW LETTERS, 2001, 87 (14) :141601/1-141601/4
[9]   Hydrogen atom spectrum and the Lamb shift in noncommutative QED [J].
Chaichian, M ;
Sheikh-Jabbari, MM ;
Tureanu, A .
PHYSICAL REVIEW LETTERS, 2001, 86 (13) :2716-2719
[10]   Aharonov-Bohm effect in noncommutative spaces [J].
Chaichian, M ;
Presnajder, P ;
Sheikh-Jabbari, MM ;
Tureanu, A .
PHYSICS LETTERS B, 2002, 527 (1-2) :149-154