On the metastable behavior of solutions to a class of parabolic systems

被引:10
作者
Strani, Marta [1 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Milan, Italy
关键词
metastability; slow motion; internal layers; reaction-diffusion systems; SLOW MOTION; EQUATION;
D O I
10.3233/ASY-141250
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we describe the metastable behavior of solutions to a class of parabolic systems. In particular, we improve some results contained in SIAM J. Math. Anal. 45(5) (2013), 3084-3113, by using different techniques to describe the slow motion of the internal layers. Numerical simulations illustrate the results.
引用
收藏
页码:325 / 344
页数:20
相关论文
共 17 条
[1]   SLOW MOTION FOR THE CAHN-HILLIARD EQUATION IN ONE SPACE DIMENSION [J].
ALIKAKOS, N ;
BATES, PW ;
FUSCO, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 90 (01) :81-135
[2]  
Berestycki H., 2001, Interfaces and Free Boundaries, V3, P361, DOI DOI 10.4171/IFB/45
[3]   METASTABLE PATTERNS IN SOLUTIONS OF UT=E2UXX-F(U) [J].
CARR, J ;
PEGO, RL .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (05) :523-576
[4]  
Fusco G., 1989, J. Dynam. Differential Equations, V1, P75
[5]   THE RELAXATION SCHEMES FOR SYSTEMS OF CONSERVATION-LAWS IN ARBITRARY SPACE DIMENSIONS [J].
JIN, S ;
XIN, ZP .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1995, 48 (03) :235-276
[6]   CONVERGENCE TO STEADY-STATE OF SOLUTIONS OF BURGERS-EQUATION [J].
KREISS, G ;
KREISS, HO .
APPLIED NUMERICAL MATHEMATICS, 1986, 2 (3-5) :161-179
[7]  
Laforgue J.G.L., 1994, METHODS APPL ANAL, V1, P465
[8]   SHOCK LAYER MOVEMENT FOR BURGERS-EQUATION [J].
LAFORGUE, JGL ;
OMALLEY, RE .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1995, 55 (02) :332-347
[9]   METASTABILITY FOR NONLINEAR PARABOLIC EQUATIONS WITH APPLICATION TO SCALAR VISCOUS CONSERVATION LAWS [J].
Mascia, Corrado ;
Strani, Marta .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (05) :3084-3113
[10]   Slow motion of gradient flows [J].
Otto, Felix ;
Reznikoff, Maria G. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 237 (02) :372-420