Bi4NbO8Cl {001} nanosheets coupled with g-C3N4 as 2D/2D heterojunction for photocatalytic degradation and CO2 reduction

被引:147
作者
Xu, Yue [1 ]
You, Yong [1 ]
Huang, Hongwei [1 ]
Guo, Yuxi [2 ]
Zhang, Yihe [1 ]
机构
[1] China Univ Geosci, Beijing Key Lab Mat Utilizat Nonmetall Minerals &, Natl Lab Mineral Mat, Sch Mat Sci & Technol, Beijing 100083, Peoples R China
[2] Guangdong Univ Technol, Sch Chem Engn & Light Ind, Guangzhou Higher Educ Mega Ctr, Guangzhou 510006, Guangdong, Peoples R China
关键词
Bi4NbO8Cl nanosheets; g-C3N4; heterojunction; Photodegradation; CO2; reduction; CONSTRUCTION; FABRICATION; ULTRATHIN; EVOLUTION; HETEROSTRUCTURE; TRANSFORMATION; MICROSPHERES; PERFORMANCE; SEPARATION; STRATEGY;
D O I
10.1016/j.jhazmat.2019.121159
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Photocatalytic activity is largely restricted by insufficient photoabsorption and intense recombination between charge carriers. Here, we first synthesized Bi4NbO8Cl nanosheets with {001} exposing facets by a molten-salt growth method, which shows largely promoted photocatalytic performance for the degradation of tetracycline (TC) and bisphenol A (BPA) in comparison with Bi4NbO8Cl particles obtained by solid-state reaction. The 2D/2D Bi4NbO8Cl/g-C3N4 heterojunction photocatalysts were then fabricated via high-energy ball-milling and post-sintering to realize intimate interfacial interaction. The photocatalytic activity of all the Bi4NbO8Cl/g-C3N4 composites largely enhances compared to Bi4NbO8Cl nanosheets and g-C3N4, also far exceeding the mechanically-mixed Bi4NbO8Cl nanosheets and g-C3N4. The impact of different reaction parameters on the photocatalytic degradation activities was investigated, including catalyst concentration, pH value and TC concentration. In addition, Bi4NbO8Cl/g-C3N4 also presents improved photocatalytic CO2 reduction activity for CO production. The large enhancement on photocatalytic activity of Bi4NbO8Cl/g-C3N4 composites is owing to the synergistic effect of favorable 2D/2D structure and construction of type II heterojunction with intimate interfacial interaction, thus boosting the charge separation. The formation of type II heterojunction was evidenced by selective photo-deposition of Pt and MnOx, which demonstrate that the reductive sites and oxidative sites are on Bi4NbO8Cl nanosheets and g-C3N4, respectively. This work may provide some insights into fabrication of efficient visible-light driven photocatalysts for environmental and energy applications.
引用
收藏
页数:14
相关论文
共 59 条
[1]   The Role of Polarization in Photocatalysis [J].
Chen, Fang ;
Huang, Hongwei ;
Guo, Lin ;
Zhang, Yihe ;
Ma, Tianyi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (30) :10061-10073
[2]   Thickness-Dependent Facet Junction Control of Layered BiOIO3 Single Crystals for Highly Efficient CO2 Photoreduction [J].
Chen, Fang ;
Huang, Hongwei ;
Ye, Liqun ;
Zhang, Tierui ;
Zhang, Yihe ;
Han, Xiaopeng ;
Ma, Tianyi .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (46)
[3]   Ultrathin, Single-Crystal WO3 Nanosheets by Two-Dimensional Oriented Attachment toward Enhanced Photocatalystic Reduction of CO2 into Hydrocarbon Fuels under Visible Light [J].
Chen, Xiaoyu ;
Zhou, Yong ;
Liu, Qi ;
Li, Zhengdao ;
Liu, Jianguo ;
Zou, Zhigang .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (07) :3372-3377
[4]   In-situ hydrothermal fabrication of Sr2FeTaO6/NaTaO3 heterojunction photocatalyst aimed at the effective promotion of electron-hole separation and visible-light absorption [J].
Cui, Entian ;
Hou, Guihua ;
Chen, Xiahui ;
Zhang, Feng ;
Deng, Yuxin ;
Yu, Guiyun ;
Li, Baibai ;
Wu, Yuqi .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 241 :52-65
[5]   In Situ Construction of g-C3N4/g-C3N4 Metal-Free Heterojunction for Enhanced Visible-Light Photocatalysis [J].
Dong, Fan ;
Zhao, Zaiwang ;
Xiong, Ting ;
Ni, Zilin ;
Zhang, Wendong ;
Sun, Yanjuan ;
Ho, Wing-Kei .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (21) :11392-11401
[6]   Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts [J].
Dong, Fan ;
Wu, Liwen ;
Sun, Yanjuan ;
Fu, Min ;
Wu, Zhongbiao ;
Lee, S. C. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (39) :15171-15174
[7]   Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst [J].
Fu, Junwei ;
Xu, Quanlong ;
Low, Jingxiang ;
Jiang, Chuanjia ;
Yu, Jiaguo .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 243 :556-565
[8]   Layered Perovskite Oxychloride Bi4NbO8Cl: A Stable Visible Light Responsive Photocatalyst for Water Splitting [J].
Fujito, Hironori ;
Kunioku, Hironobu ;
Kato, Daichi ;
Suzuki, Hajime ;
Higashi, Masanobu ;
Kageyama, Hiroshi ;
Abe, Ryu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (07) :2082-2085
[9]   Surface-Halogenation-Induced Atomic-Site Activation and Local Charge Separation for Superb CO2 Photoreduction [J].
Hao, Lin ;
Kang, Lei ;
Huang, Hongwei ;
Ye, Liqun ;
Han, Keli ;
Yang, Songqiu ;
Yu, Hongjian ;
Batmunkh, Munkhbayar ;
Zhang, Yihe ;
Ma, Tianyi .
ADVANCED MATERIALS, 2019, 31 (25)
[10]   Bismuth oxychloride homogeneous phasejunction BiOCl/Bi12O17Cl2 with unselectively efficient photocatalytic activity and mechanism insight [J].
Hao, Lin ;
Huang, Hongwei ;
Guo, Yuxi ;
Du, Xin ;
Zhang, Yihe .
APPLIED SURFACE SCIENCE, 2017, 420 :303-312