New tuning rules for fractional PIα controllers

被引:76
作者
Maione, G.
Lino, P.
机构
[1] Politecn Bari, Dipartimento Ingn Ambiente & Sviluppo Sostenibile, I-74100 Taranto, Italy
[2] Politecn Bari, Dipartimento Elettrotecn & Elettron, I-70125 Bari, Italy
关键词
robustness; PI alpha controller design; fractional system; tuning methods; symmetrical optimum;
D O I
10.1007/s11071-006-9125-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper describes a new tuning method for fractional PI alpha controllers. The main theoretical contribution of the paper is the analytical solution of a nonlinear function minimization problem, which plays a central role in deriving the tuning formulae. These formulae take advantage of the fractional order alpha to offer an excellent tradeoff between dynamic performances and stability robustness. Finally, a position control is implemented to compare laboratory experiments with computer simulations. The comparison results show the good performance of the tuning formulae.
引用
收藏
页码:251 / 257
页数:7
相关论文
共 28 条
[1]  
[Anonymous], 1958, REGCLUNGSTECHNIK
[2]  
[Anonymous], 1994, US Patent, Patent No. [Lune, B.J., US5371, 670, 5371670]
[3]  
[Anonymous], 1961, ETJ JPN
[4]  
Astrom K. J., 1995, PID CONTROLLERS THEO
[5]  
AXTELL M, 1990, PROC NAECON IEEE NAT, P563, DOI 10.1109/NAECON.1990.112826
[6]  
Caponetto R., 2002, P 15 INT S MATH THEO
[7]   FRACTAL SYSTEM AS REPRESENTED BY SINGULARITY FUNCTION [J].
CHAREF, A ;
SUN, HH ;
TSAO, YY ;
ONARAL, B .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (09) :1465-1470
[8]  
Chen Y. Q., 2005, FRACTIONAL DERIVATIV, P687
[9]  
Dorcak L'., 2006, P 7 INT CARP CONTR C, P121
[10]   CHAOS IN A FRACTIONAL ORDER CHUAS SYSTEM [J].
HARTLEY, TT ;
LORENZO, CF ;
QAMMER, HK .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1995, 42 (08) :485-490