The combinatorial structure of the Hawaiian earring group

被引:65
作者
Cannon, JW [1 ]
Conner, GR [1 ]
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
关键词
Hawaiian earring; free subgroups; commutator; subgroup; abelianization; transfinite words; specker group; lambda-trees; lambda-metric;
D O I
10.1016/S0166-8641(99)00103-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the combinatorial structure of the Hawaiian earring group, by showing that it can be represented as a group of transfinite,words on a countably infinite alphabet exactly analogously to the representation of a finite rank; free group as finite words on a finite alphabet. We define a big free group, similarly as the group of transfinite words on given set, and study their group theoretic structure. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:225 / 271
页数:47
相关论文
共 18 条
[1]  
Bogley W.A., UNIVERSAL PATH SPACE
[2]  
BOGLEY WA, WEIGHTED COMBINATORI
[3]   The big fundamental group, big Hawaiian earrings, and the big free groups [J].
Cannon, JW ;
Conner, GR .
TOPOLOGY AND ITS APPLICATIONS, 2000, 106 (03) :273-291
[4]  
CANNON JW, 1997, FUNDAMENTAL GROUPS O
[5]  
de Smit B., 1992, INT J ALGEBR COMPUT, V2, P33, DOI DOI 10.1142/S0218196792000049
[6]   THE 1ST INTEGRAL SINGULAR HOMOLOGY GROUPS OF ONE POINT UNIONS [J].
EDA, K .
QUARTERLY JOURNAL OF MATHEMATICS, 1991, 42 (168) :443-456
[7]   FREE SIGMA-PRODUCTS AND NONCOMMUTATIVELY SLENDER-GROUPS [J].
EDA, K .
JOURNAL OF ALGEBRA, 1992, 148 (01) :243-263
[8]   Ordered topological spaces [J].
Eilenberg, S .
AMERICAN JOURNAL OF MATHEMATICS, 1941, 63 :39-45
[9]  
FUCHS L, 1970, INFINITE ABELIAN GRO, V1
[10]  
Griffiths H. B., 1956, P LOND MATH SOC, V6, P455