A New Hardware Approach to Self-Organizing Maps

被引:2
作者
Dias, Leonardo A. [1 ]
Coutinho, Maria G. F. [1 ]
Gaura, Elena [2 ]
Fernandes, Marcelo A. C. [3 ]
机构
[1] Univ Fed Rio Grande do Norte, Lab Machine Learning, Natal, RN, Brazil
[2] Coventry Univ, Fac Engn & Comp, Coventry, W Midlands, England
[3] Dept Comp & Automat Engn, Natal, RN, Brazil
来源
2020 IEEE 31ST INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC SYSTEMS, ARCHITECTURES AND PROCESSORS (ASAP 2020) | 2020年
关键词
Self-Organizing Map; Big Data; Hardware; FPGA; IMPLEMENTATION; NETWORK;
D O I
10.1109/ASAP49362.2020.00041
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Self-Organizing Maps (SOMs) are widely used as a data mining technique for applications that require data dimensionality reduction and clustering. Given the complexity of the SOM learning phase and the massive dimensionality of many data sets as well as their sample size in Big Data applications, high-speed processing is critical when implementing SOM approaches. This paper proposes a new hardware approach to SOM implementation, exploiting parallelization, to optimize the system's processing time. Unlike most implementations in the literature, this proposed approach allows the parallelization of the data dimensions instead of the map, ensuring high processing speed regardless of data dimensions. An implementation with field-programmable gate arrays (FPGA) is presented and evaluated. Key evaluation metrics are processing time (or throughput) and FPGA area occupancy (or hardware resources).
引用
收藏
页码:205 / 212
页数:8
相关论文
共 19 条
[11]  
Lachmair J, 2017, IEEE IJCNN, P4299, DOI 10.1109/IJCNN.2017.7966400
[12]   A million spiking-neuron integrated circuit with a scalable communication network and interface [J].
Merolla, Paul A. ;
Arthur, John V. ;
Alvarez-Icaza, Rodrigo ;
Cassidy, Andrew S. ;
Sawada, Jun ;
Akopyan, Filipp ;
Jackson, Bryan L. ;
Imam, Nabil ;
Guo, Chen ;
Nakamura, Yutaka ;
Brezzo, Bernard ;
Vo, Ivan ;
Esser, Steven K. ;
Appuswamy, Rathinakumar ;
Taba, Brian ;
Amir, Arnon ;
Flickner, Myron D. ;
Risk, William P. ;
Manohar, Rajit ;
Modha, Dharmendra S. .
SCIENCE, 2014, 345 (6197) :668-673
[13]   Combining domain filling with a self-organizing map to analyze multi-species hydrocarbon signatures on a regional scale [J].
Nathan, Brian J. ;
Lary, David J. .
ENVIRONMENTAL MONITORING AND ASSESSMENT, 2019, 191 (Suppl 2)
[14]   An efficient problem-independent hardware implementation of genetic algorithms [J].
Nedjah, Nadia ;
Mourelle, Luiza de Macedo .
NEUROCOMPUTING, 2007, 71 (1-3) :88-94
[15]  
Patel KMA, 2016, 2016 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), VOL. 1, P2042, DOI 10.1109/ICCSP.2016.7754534
[16]   Exploring heterogeneous scheduling for edge computing with CPU and FPGA MPSoCs [J].
Rodriguez, Andres ;
Navarro, Angeles ;
Asenjo, Rafael ;
Corbera, Francisco ;
Gran, Ruben ;
Suarez, Dario ;
Nunez-Yanez, Jose .
JOURNAL OF SYSTEMS ARCHITECTURE, 2019, 98 :27-40
[17]   A shared synapse architecture for efficient FPGA implementation of autoencoders [J].
Suzuki, Akihiro ;
Morie, Takashi ;
Tamukoh, Hakaru .
PLOS ONE, 2018, 13 (03)
[18]   Using parallelization and hardware concurrency to improve the performance of a genetic algorithm [J].
Tirumalai, Vijay ;
Ricks, Kenneth G. ;
Woodbury, Keith A. .
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2007, 19 (04) :443-462
[19]   SOM neural network design - A new Simulink library based approach targeting FPGA implementation [J].
Tisan, A. ;
Cirstea, M. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2013, 91 :134-149