Carbon Nanotube-Based Polymer Composite Thermoelectric Generators

被引:0
作者
Hewitt, Corey A. [1 ]
Carroll, David L. [1 ]
机构
[1] Wake Forest Univ, Ctr Nanotechnol & Mol Mat, Winston Salem, NC 27105 USA
来源
POLYMER COMPOSITES FOR ENERGY HARVESTING, CONVERSION, AND STORAGE | 2014年 / 1161卷
关键词
ELECTRONIC TRANSPORT-PROPERTIES; THERMAL-CONDUCTIVITY; ELECTRICAL-CONDUCTIVITY; POWER; BEHAVIOR; THERMOPOWER; CONDUCTANCE; POLYANILINE; RESISTIVITY; CONVERSION;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Carbon nanotube-based polymer composites possess several properties that make them ideal for use in low powered waste heat recovery applications not suitable to nonorganic crystalline materials even though their thermoelectric performance is lower, such as their light weight and flexible physical structure. Additionally, the favorable thermoelectric properties of the carbon nanotubes with moderate Seebeck coefficients and potentially large electrical conductivities result in modest power factors, while the low thermal conductivity of the polymer host aids in maintaining a temperature gradient across the composite. In order to effectively utilize a thermoelectric material in a practical application, they must be combined in a thin film device structure consisting of alternating p-type and n-type elements that are connected electrically in series and thermally in parallel. The device performance is then dictated by the intrinsic thermoelectric properties of the individual layers in the device. Ultimately, the total power output is limited by several extrinsic properties of the specific application.
引用
收藏
页码:191 / 211
页数:21
相关论文
共 114 条
[1]  
[Anonymous], INTERFACE
[2]   Thermoelectric power of aligned and randomly oriented carbon nanotubes [J].
Baxendale, M ;
Lim, KG ;
Amaratunga, GAJ .
PHYSICAL REVIEW B, 2000, 61 (19) :12705-12708
[3]   Is the intrinsic thermoelectric power of carbon nanotubes positive? [J].
Bradley, K ;
Jhi, SH ;
Collins, PG ;
Hone, J ;
Cohen, ML ;
Louie, SG ;
Zettl, A .
PHYSICAL REVIEW LETTERS, 2000, 85 (20) :4361-4364
[4]   Chemical Vapor Deposition Synthesis of N-, P-, and Si-Doped Single-Walled Carbon Nanotubes [J].
Campos-Delgado, Jessica ;
Maciel, Indhira O. ;
Cullen, David A. ;
Smith, David J. ;
Jorio, Ado ;
Pimenta, Marcos A. ;
Terrones, Humberto ;
Terrones, Mauricio .
ACS NANO, 2010, 4 (03) :1696-1702
[5]   Polymer-nanotube composites for transparent, conducting thin films [J].
Carroll, DL ;
Czerw, R ;
Webster, S .
SYNTHETIC METALS, 2005, 155 (03) :694-697
[6]   Thermal conductivity of carbon nanotubes [J].
Che, JW ;
Çagin, T ;
Goddard, WA .
NANOTECHNOLOGY, 2000, 11 (02) :65-69
[7]   Nonlinear behavior in the thermopower of doped carbon nanotubes due to strong, localized states [J].
Choi, YM ;
Lee, DS ;
Czerw, R ;
Chiu, PW ;
Grobert, N ;
Terrones, M ;
Reyes-Reyes, M ;
Terrones, H ;
Charlier, JC ;
Ajayan, PM ;
Roth, S ;
Carroll, DL ;
Park, YW .
NANO LETTERS, 2003, 3 (06) :839-842
[8]   Avoided crossing of rattler modes in thermoelectric materials [J].
Christensen, Mogens ;
Abrahamsen, Asger B. ;
Christensen, Niels B. ;
Juranyi, Fanni ;
Andersen, Niels H. ;
Lefmann, Kim ;
Andreasson, Jakob ;
Bahl, Christian R. H. ;
Iversen, Bo B. .
NATURE MATERIALS, 2008, 7 (10) :811-815
[9]   Extreme oxygen sensitivity of electronic properties of carbon nanotubes [J].
Collins, PG ;
Bradley, K ;
Ishigami, M ;
Zettl, A .
SCIENCE, 2000, 287 (5459) :1801-1804
[10]   SIZE AND TEMPERATURE EFFECTS ON THE THERMOELECTRIC-POWER AND ELECTRICAL-RESISTIVITY OF BISMUTH TELLURIDE THIN-FILMS [J].
DAS, VD ;
SOUNDARARAJAN, N .
PHYSICAL REVIEW B, 1988, 37 (09) :4552-4559