Cosmological Evolution of the Formation Rate of Short Gamma-Ray Bursts with and without Extended Emission

被引:45
作者
Dainotti, M. G. [1 ,2 ,6 ]
Petrosian, V. [3 ,4 ,5 ]
Bowden, L.
机构
[1] Natl Astron Observ Japan, Mitaka, Tokyo, Japan
[2] Space Sci Inst, Boulder, CO 80301 USA
[3] Stanford Univ, Dept Phys, Via Pueblo Mall 382, Stanford, CA 94305 USA
[4] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[6] Grad Univ Adv Studies, Hayama, Kanagawa 2400193, Japan
关键词
BINARY NEUTRON-STAR; LUMINOSITY FUNCTION; GRAVITATIONAL-WAVES; TIME DISTRIBUTION; SHORT GRBS; PROMPT; ACCRETION; AFTERGLOW; PLATEAU; DELAY;
D O I
10.3847/2041-8213/abf5e4
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Originating from neutron star-neutron star or neutron star-black hole mergers, short gamma-ray bursts (SGRBs) are the first electromagnetic emitters associated with gravitational waves (GWs). This association makes the determination of SGRB formation rate (FR) a critical issue. We determine the true SGRB FR and its relation to the cosmic star formation rate (SFR). This can help in determining the expected GW rate involving small mass mergers. We present nonparametric methods for the determination of the evolutions of the luminosity function (LF) and the FR using SGRBs observed by Swift, without any assumptions. These are powerful tools for small samples, such as our sample of 68 SGRBs. We combine SGRBs with and without extended emission (SEE), assuming that both descend from the same progenitor. To overcome the incompleteness introduced by redshift measurements we use the Kolmogorov-Smirnov (KS) test to find flux thresholds yielding a sample of sources with a redshift drawn from the parent sample including all sources. Using two subsamples of SGRBs with flux limits of 4.57 x 10(-7) and 2.15 x 10(-7) erg cm(-2) s(-1) with respective KS p = (1, 0.9), we find a 3 sigma evidence for luminosity evolution (LE), a broken power-law LF with significant steepening at L similar to 10(50) erg s(-1), and an FR evolution that decreases monotonically with redshift (independent of LE and the thresholds). Thus, SGRBs may have been more luminous in the past with an FR delayed relative to the SFR as expected in the merger scenario.
引用
收藏
页数:7
相关论文
共 66 条
[11]  
Bryant C., 2020, ARXIV201002935V1
[12]   GENERALIZED TESTS FOR SELECTION EFFECTS IN GAMMA-RAY BURST HIGH-ENERGY CORRELATIONS [J].
Butler, Nathaniel R. ;
Kocevski, Daniel ;
Bloom, Joshua S. .
ASTROPHYSICAL JOURNAL, 2009, 694 (01) :76-83
[13]   Luminosity-time and luminosity-luminosity correlations for GRB prompt and afterglow plateau emissions [J].
Dainotti, M. ;
Petrosian, V. ;
Willingale, R. ;
O'Brien, P. ;
Ostrowski, M. ;
Nagataki, S. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 451 (04) :3898-3908
[14]   A Study of the Gamma-Ray Burst Fundamental Plane [J].
Dainotti, M. G. ;
Hernandez, X. ;
Postnikov, S. ;
Nagataki, S. ;
O'brien, P. ;
Willingale, R. ;
Striegel, S. .
ASTROPHYSICAL JOURNAL, 2017, 848 (02)
[15]   Gamma-Ray Burst Prompt Correlations [J].
Dainotti, M. G. ;
Del Vecchio, R. ;
Tarnopolski, M. .
ADVANCES IN ASTRONOMY, 2018, 2018
[16]   DETERMINATION OF THE INTRINSIC LUMINOSITY TIME CORRELATION IN THE X-RAY AFTERGLOWS OF GAMMA-RAY BURSTS [J].
Dainotti, Maria Giovanna ;
Petrosian, Vahe' ;
Singal, Jack ;
Ostrowski, Michal .
ASTROPHYSICAL JOURNAL, 2013, 774 (02)
[17]   A SIMPLE TEST OF INDEPENDENCE FOR TRUNCATED DATA WITH APPLICATIONS TO REDSHIFT SURVEYS [J].
EFRON, B ;
PETROSIAN, V .
ASTROPHYSICAL JOURNAL, 1992, 399 (02) :345-352
[18]   NUCLEOSYNTHESIS, NEUTRINO BURSTS AND GAMMA-RAYS FROM COALESCING NEUTRON STARS [J].
EICHLER, D ;
LIVIO, M ;
PIRAN, T ;
SCHRAMM, DN .
NATURE, 1989, 340 (6229) :126-128
[19]   Long γ-ray bursts and core-collapse supernovae have different environments [J].
Fruchter, A. S. ;
Levan, A. J. ;
Strolger, L. ;
Vreeswijk, P. M. ;
Thorsett, S. E. ;
Bersier, D. ;
Burud, I. ;
Castro Ceron, J. M. ;
Castro-Tirado, A. J. ;
Conselice, C. ;
Dahlen, T. ;
Ferguson, H. C. ;
Fynbo, J. P. U. ;
Garnavich, P. M. ;
Gibbons, R. A. ;
Gorosabel, J. ;
Gull, T. R. ;
Hjorth, J. ;
Holland, S. T. ;
Kouveliotou, C. ;
Levay, Z. ;
Livio, M. ;
Metzger, M. R. ;
Nugent, P. E. ;
Petro, L. ;
Pian, E. ;
Rhoads, J. E. ;
Riess, A. G. ;
Sahu, K. C. ;
Smette, A. ;
Tanvir, N. R. ;
Wijers, R. A. M. J. ;
Woosley, S. E. .
NATURE, 2006, 441 (7092) :463-468
[20]   The Swift gamma-ray burst mission [J].
Gehrels, N ;
Chincarini, G ;
Giommi, P ;
Mason, KO ;
Nousek, JA ;
Wells, AA ;
White, NE ;
Barthelmy, SD ;
Burrows, DN ;
Cominsky, LR ;
Hurley, KC ;
Marshall, FE ;
Mészáros, P ;
Roming, PWA ;
Angelini, L ;
Barbier, LM ;
Belloni, T ;
Campana, S ;
Caraveo, PA ;
Chester, MM ;
Citterio, O ;
Cline, TL ;
Cropper, MS ;
Cummings, JR ;
Dean, AJ ;
Feigelson, ED ;
Fenimore, EE ;
Frail, DA ;
Fruchter, AS ;
Garmire, GP ;
Gendreau, K ;
Ghisellini, G ;
Greiner, J ;
Hill, JE ;
Hunsberger, SD ;
Krimm, HA ;
Kulkarni, SR ;
Kumar, P ;
Lebrun, F ;
Lloyd-Ronning, NM ;
Markwardt, CB ;
Mattson, BJ ;
Mushotzky, RF ;
Norris, JP ;
Osborne, J ;
Paczynski, B ;
Palmer, DM ;
Park, HS ;
Parsons, AM ;
Paul, J .
ASTROPHYSICAL JOURNAL, 2004, 611 (02) :1005-1020