Embedded surfaces with ergodic geodesic flows

被引:11
作者
Burns, K [1 ]
Donnay, VJ
机构
[1] Northwestern Univ, Bryn Mawr, PA 19010 USA
[2] Bryn Mawr Coll, Bryn Mawr, PA 19010 USA
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1997年 / 7卷 / 07期
关键词
D O I
10.1142/S0218127497001199
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Following ideas of Osserman, Ballmann and Katok, we construct smooth surfaces with ergodic, and indeed Bernoulli, geodesic flow that are isometrically embedded in R-3. These surfaces can have arbitrary genus and can be made analytic.
引用
收藏
页码:1509 / 1527
页数:19
相关论文
共 29 条
[1]   CONVEX-SUPPORTING DOMAINS ON SPHERES [J].
ALEXANDER, S ;
BISHOP, RL .
ILLINOIS JOURNAL OF MATHEMATICS, 1974, 18 (01) :37-47
[2]  
[Anonymous], 1963, ANN MATH STUD
[3]  
BALLMANN W, COMMUNICATION
[4]  
BANGERT V, COMMUNICATION
[5]   BILLIARDS IN POLYGONS [J].
BOLDRIGHINI, C ;
KEANE, M ;
MARCHETTI, F .
ANNALS OF PROBABILITY, 1978, 6 (04) :532-540
[6]  
BURAGO DY, 1992, ADV SOV MATH, V9, P211
[7]  
BURAGO DY, 1989, SOV MATH DOKL, V37, P501
[8]   REAL ANALYTIC BERNOULLI GEODESIC-FLOWS ON S2 [J].
BURNS, K ;
GERBER, M .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1989, 9 :27-45
[9]  
BURNS K, 1994, J REINE ANGEW MATH, V450, P1
[10]  
BURNS K, 1989, ERGOD TH DYNAM SYST, V3, P19