Spectral triples for pseudomanifolds with isolated singularity

被引:12
作者
Lescure, JM [1 ]
机构
[1] Univ Clermont Ferrand, Dept Math, F-63177 Aubiere, France
来源
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE | 2001年 / 129卷 / 04期
关键词
D O I
10.24033/bsmf.2409
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use elliptic operators of Fuchs type on an even dimensional pseudonlanifold with an isolated singularity to construct spectral triples. This class of operators includes Dirac operators with coefficients in flat bundles in the radial direction and, under some hypothesis, these operators generate the even K-homology group tensorised by C of the pseudomanifold. Moreover, their Chern character is computed.
引用
收藏
页码:593 / 623
页数:31
相关论文
共 29 条
[1]  
BAUM P, 1982, P SYMP PURE MATH, V38, P117
[2]  
Berline N., 1991, COMPREHENSIVE STUDIE, V298
[3]   OKA PRINCIPLE, K-THEORY AND NONCOMMUTATIVE DYNAMIC-SYSTEMS [J].
BOST, JB .
INVENTIONES MATHEMATICAE, 1990, 101 (02) :261-333
[4]   REGULAR SINGULAR ASYMPTOTICS [J].
BRUNING, J ;
SEELEY, R .
ADVANCES IN MATHEMATICS, 1985, 58 (02) :133-148
[5]  
Bruning J, 1996, J REINE ANGEW MATH, V474, P25
[6]   AN INDEX THEOREM FOR 1ST ORDER REGULAR SINGULAR-OPERATORS [J].
BRUNING, J ;
SEELEY, R .
AMERICAN JOURNAL OF MATHEMATICS, 1988, 110 (04) :659-714
[7]   Periodic cyclic cohomology Chern character for pseudomanifolds with one singular stratum [J].
Chan, SW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (03) :669-675
[8]  
CHEEGER J, 1983, J DIFFER GEOM, V18, P575
[10]   THE DIRAC OPERATOR ON SPACES WITH CONICAL SINGULARITIES AND POSITIVE SCALAR CURVATURES [J].
CHOU, AW .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 289 (01) :1-40