Towards improved magnetic fluid hyperthermia: major-loops to diminish variations in local heating

被引:16
作者
Munoz-Menendez, Cristina [1 ,2 ]
Serantes, David [1 ,2 ,3 ]
Ruso, Juan M. [1 ,2 ]
Baldomir, Daniel [1 ,2 ]
机构
[1] Univ Santiago de Compostela, Inst Invest Tecnolox, Santiago De Compostela 15782, Spain
[2] Univ Santiago de Compostela, Dept Fis Aplicada, Santiago De Compostela 15782, Spain
[3] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England
关键词
CELL-TREATMENT; NANOPARTICLES;
D O I
10.1039/c7cp01442b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the context of using magnetic nanoparticles for heat-mediated applications, the need of an accurate knowledge of the local (at the nanoparticle level) heat generation in addition to the usually studied global counterpart has been recently highlighted. Such a need requires accurate knowledge of the links among the intrinsic particle properties, system characteristics and experimental conditions. In this work we have investigated the role of the particles' anisotropy polydispersity in relation to the amplitude (H-max) of the AC magnetic field using a Monte Carlo technique. Our results indicate that it is better to use particles with large anisotropy for enhancing global heating, whereas for achieving homogeneous local heating it is better to use lower anisotropy particles. The latter ensures that most of the system undergoes major-loop hysteresis conditions, which is the key-point. This is equivalent to say that low-anisotropy particles (i.e. with less heating capability) may be better for accurate heat-mediated applications, which goes against some research trends in the literature that seek for large anisotropy (and hence heating) values.
引用
收藏
页码:14527 / 14532
页数:6
相关论文
共 28 条
[1]   Controlled Cell Death by Magnetic Hyperthermia: Effects of Exposure Time, Field Amplitude, and Nanoparticle Concentration [J].
Asin, L. ;
Ibarra, M. R. ;
Tres, A. ;
Goya, G. F. .
PHARMACEUTICAL RESEARCH, 2012, 29 (05) :1319-1327
[2]   Biological applications of magnetic nanoparticles [J].
Colombo, Miriam ;
Carregal-Romero, Susana ;
Casula, Maria F. ;
Gutierrez, Lucia ;
Morales, Maria P. ;
Boehm, Ingrid B. ;
Heverhagen, Johannes T. ;
Prosperi, Davide ;
Parak, Wolfgang. J. .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (11) :4306-4334
[3]   A Single Picture Explains Diversity of Hyperthermia Response of Magnetic Nanoparticles [J].
Conde-Leboran, Ivan ;
Baldomir, Daniel ;
Martinez-Boubeta, Carlos ;
Chubykalo-Fesenko, Oksana ;
Morales, Maria del Puerto ;
Salas, Gorka ;
Cabrera, David ;
Camarero, Julio ;
Teran, Francisco J. ;
Serantes, David .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (27) :15698-15706
[4]   Energy barrier distributions for magnetic nanoparticles with competing cubic and uniaxial anisotropies [J].
Correia, M. J. ;
Figueiredo, W. ;
Schwarzacher, W. .
PHYSICS LETTERS A, 2014, 378 (45) :3366-3371
[5]   EGFR-Targeted Magnetic Nanoparticle Heaters Kill Cancer Cells without a Perceptible Temperature Rise [J].
Creixell, Mar ;
Bohorquez, Ana C. ;
Torres-Lugo, Madeline ;
Rinaldi, Carlos .
ACS NANO, 2011, 5 (09) :7124-7129
[6]   Enhanced magnetic hyperthermia of CoFe2O4 and MnFe2O4 nanoparticles [J].
Cruz, M. M. ;
Ferreira, L. P. ;
Ramos, J. ;
Mendo, S. G. ;
Alves, A. F. ;
Godinho, M. ;
Carvalho, M. D. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 703 :370-380
[7]   Tunable High Aspect Ratio Iron Oxide Nanorods for Enhanced Hyperthermia [J].
Das, Raja ;
Alonso, Javier ;
Porshokouh, Zohreh Nemati ;
Kalappattil, Vijaysankar ;
Torres, David ;
Manh-Huong Phan ;
Garaio, Eneko ;
Angel Garcia, Jose ;
Sanchez Llamazares, Jose Luis ;
Srikanth, Hariharan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (18) :10086-10093
[8]   Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs [J].
Di Corato, Riccardo ;
Espinosa, Ana ;
Lartigue, Lenaic ;
Tharaud, Mickael ;
Chat, Sophie ;
Pellegrino, Teresa ;
Menager, Christine ;
Gazeau, Florence ;
Wilhelm, Claire .
BIOMATERIALS, 2014, 35 (24) :6400-6411
[9]  
Dias J.T., 2013, Angewandte Chemie, V125, P11740
[10]   Hysteresis losses of magnetic nanoparticle powders in the single domain size range [J].
Dutz, S. ;
Hergt, R. ;
Muerbe, J. ;
Mueller, R. ;
Zeisberger, M. ;
Andrae, W. ;
Toepfer, J. ;
Bellemann, M. E. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 308 (02) :305-312