共 50 条
Inverse scattering for nonlocal reverse-space multicomponent nonlinear Schrodinger equations
被引:4
|作者:
Ma, Wen-Xiu
[1
,2
,3
,4
,5
]
Huang, Yehui
[3
,6
]
Wang, Fudong
[3
]
机构:
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[3] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[4] South China Univ Technol, Sch Math, Guangzhou 510640, Peoples R China
[5] North West Univ, Dept Math Sci, Mafikeng Campus,Private Bag X2046, ZA-2735 Mmabatho, South Africa
[6] North China Elect Power Univ, Sch Math & Phys, Beijing 102206, Peoples R China
来源:
INTERNATIONAL JOURNAL OF MODERN PHYSICS B
|
2021年
/
35卷
/
04期
关键词:
Matrix spectral problem;
nonlocal reduction;
inverse scattering;
Riemann–
Hilbert problem;
soliton solution;
RIEMANN-HILBERT APPROACH;
DE-VRIES EQUATION;
SOLITON-SOLUTIONS;
TRANSFORM;
WAVES;
D O I:
10.1142/S021797922150051X
中图分类号:
O59 [应用物理学];
学科分类号:
摘要:
The paper aims to discuss nonlocal reverse-space multicomponent nonlinear Schrodinger equations and their inverse scattering transforms. The inverse scattering problems are analyzed by means of Riemann-Hilbert problems, and Gelfand-Levitan-Marchenko-type integral equations for generalized matrix Jost solutions are determined by the Sokhotski-Plemelj formula. Soliton solutions are generated from the reflectionless transforms associated with zeros of the Riemann-Hilbert problems.
引用
收藏
页数:20
相关论文