Discovery of commonly existing anode biofilm microbes in two different wastewater treatment MFCs using FLX Titanium pyrosequencing

被引:71
作者
Lee, Tae Kwon [1 ]
Doan, Tuan Van [1 ]
Yoo, Kyuseon [2 ]
Choi, Soojung [3 ]
Kim, Changwon [3 ]
Park, Joonhong [1 ]
机构
[1] Yonsei Univ, Sch Civil & Environm Engn, Seoul 120749, South Korea
[2] Jeonju Univ, Dept Civil & Environm Engn, Jeonju 560759, South Korea
[3] Pusan Natl Univ, Dept Civil & Environm Engn, Pusan 609735, South Korea
关键词
Microbial Fuel Cell (MFC); Microbial community; Pyrosequencing; Anode biofilm; Renewable energy; Wastewater; ELECTRICITY-GENERATION; FUEL-CELLS; BACTERIAL COMMUNITIES; POPULATION-DYNAMICS; TREATMENT-PLANT; DIVERSITY; PERFORMANCE; ENRICHMENT; DNA;
D O I
10.1007/s00253-010-2680-6
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In microbial fuel cells (MFC), wastewater is used as a fuel while organic and nutrient pollution in the wastewater are being treated. In the present study, commonly existing microbial populations in MFC anode biofilms were identified using high throughput FLX Titanium pyrosequencing to provide much more extensive information of anode microbial communities than previously possible. Using 454 FLX Titanium pyrosequencing, 31,901 sequence reads with an average length of 430 bp were obtained from 16S rRNA gene amplicons from different MFC anodes with different substrate exposure and respiration conditions, and microbial community structure and population identification were then analyzed using high-throughput bioinformatics methods. Although community profiles from the four samples were significantly different, hierarchical clustering analysis revealed several bacterial populations that commonly exist in the anode biofilm samples. These bacteria were phylogenetically distributed in Firmicutes and the alpha-, beta-, gamma-, and delta-subclasses of Proteobacteria. In addition, most of these populations were found to be novel anode bacteria and exhibited oligotrophic or substrate-concentration-insensitive growth. These findings suggest that commonly existing anode bacteria may play a key role in the stable operations of MFCs, combined with wastewater treatment plants, under fluctuating substrate and respiration conditions.
引用
收藏
页码:2335 / 2343
页数:9
相关论文
共 49 条
[1]   Continuous electricity generation at high voltages and currents using stacked microbial fuel cells [J].
Aelterman, Peter ;
Rabaey, Korneel ;
Pham, Hai The ;
Boon, Nico ;
Verstraete, Willy .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (10) :3388-3394
[2]   Construction of bacterial artificial chromosome library from electrochemical microorganisms [J].
Back, JH ;
Kim, MS ;
Cho, H ;
Chang, IS ;
Lee, JY ;
Kim, KS ;
Kim, BH ;
Park, YI ;
Han, YS .
FEMS MICROBIOLOGY LETTERS, 2004, 238 (01) :65-70
[3]   Quality scores and SNP detection in sequencing-by-synthesis systems [J].
Brockman, William ;
Alvarez, Pablo ;
Young, Sarah ;
Garber, Manuel ;
Giannoukos, Georgia ;
Lee, William L. ;
Russ, Carsten ;
Lander, Eric S. ;
Nusbaum, Chad ;
Jaffe, David B. .
GENOME RESEARCH, 2008, 18 (05) :763-770
[4]  
Cardenas Erick, 2009, Environmental Engineering Research, V14, P3
[5]   Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells [J].
Chae, Kyu-Jung ;
Choi, Mi-Jin ;
Lee, Jin-Wook ;
Kim, Kyoung-Yeol ;
Kim, In S. .
BIORESOURCE TECHNOLOGY, 2009, 100 (14) :3518-3525
[6]   Application of biocathode in microbial fuel cells: cell performance and microbial community [J].
Chen, Guo-Wei ;
Choi, Soo-Jung ;
Lee, Tae-Ho ;
Lee, Gil-Young ;
Cha, Jae-Hwan ;
Kim, Chang-Won .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2008, 79 (03) :379-388
[7]   Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system [J].
Chung, Kyungmi ;
Okabe, Satoshi .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2009, 83 (05) :965-977
[8]   Minimizing losses in bio-electrochemical systems: the road to applications [J].
Clauwaert, Peter ;
Aelterman, Peter ;
Pham, The Hai ;
De Schamphelaire, Liesje ;
Carballa, Marta ;
Rabaey, Korneel ;
Verstraete, Willy .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2008, 79 (06) :901-913
[9]   The Ribosomal Database Project: improved alignments and new tools for rRNA analysis [J].
Cole, J. R. ;
Wang, Q. ;
Cardenas, E. ;
Fish, J. ;
Chai, B. ;
Farris, R. J. ;
Kulam-Syed-Mohideen, A. S. ;
McGarrell, D. M. ;
Marsh, T. ;
Garrity, G. M. ;
Tiedje, J. M. .
NUCLEIC ACIDS RESEARCH, 2009, 37 :D141-D145
[10]   Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB [J].
DeSantis, T. Z. ;
Hugenholtz, P. ;
Larsen, N. ;
Rojas, M. ;
Brodie, E. L. ;
Keller, K. ;
Huber, T. ;
Dalevi, D. ;
Hu, P. ;
Andersen, G. L. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2006, 72 (07) :5069-5072