About Error Bounds in Metrizable Topological Vector Spaces

被引:3
|
作者
Abbasi, Malek [1 ]
Thera, Michel [2 ,3 ]
机构
[1] Univ Isfahan, Dept Math, Esfahan, Iran
[2] Univ Limoges, XLIM UMR CNRS 7252, Limoges, France
[3] Federat Univ Vic, Ctr Informat & Appl Optimisat, 123 Ave Albert Thomas, Limoges 87060, Australia
关键词
Error bound; Hoffman estimate; Hadamard directional derivative; Translation; invariant metric; Strongly regular point; Homogeneously continuous functions; SYSTEMS;
D O I
10.1007/s11228-022-00643-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper aims to present some sufficient criteria under which a given function between two spaces that are either topological vector spaces whose topologies are generated by metrics or metrizable subsets of some topological vector spaces, satisfies the error bound property. Then, we discuss the Hoffman estimation and obtain some results for the estimate of the distance to the set of solutions to a system of linear equalities. The advantage of our estimate is that it allows to calculate the coefficient of the error bound. The applications of this presentation are illustrated by some examples.
引用
收藏
页码:1291 / 1311
页数:21
相关论文
共 50 条
  • [1] About Error Bounds in Metrizable Topological Vector Spaces
    Malek Abbasi
    Michel Théra
    Set-Valued and Variational Analysis, 2022, 30 (4) : 1291 - 1311
  • [2] PERTURBATION OF ERROR BOUNDS FOR VECTOR-VALUED FUNCTIONS
    Hu, Chunhai
    He, Qinghai
    PACIFIC JOURNAL OF OPTIMIZATION, 2021, 17 (02): : 321 - 335
  • [3] Perturbation Analysis of Error Bounds for Convex Functions on Banach Spaces
    Wei, Zhou
    Thera, Michel
    Yao, Jen-Chih
    JOURNAL OF CONVEX ANALYSIS, 2025, 32 (03) : 883 - 900
  • [4] Error bounds for lower semicontinuous functions in normed spaces
    Ng, KF
    Zheng, XY
    SIAM JOURNAL ON OPTIMIZATION, 2001, 12 (01) : 1 - 17
  • [5] Characterizations of error bounds for convex multifunctions on Banach spaces
    Ng, KF
    Zheng, XY
    MATHEMATICS OF OPERATIONS RESEARCH, 2004, 29 (01) : 45 - 63
  • [6] ON GENERALIZED VECTOR EQUILIBRIUM-LIKE PROBLEM IN TOPOLOGICAL VECTOR SPACES
    Ceng, L. -C.
    Liou, Y. -C.
    Pang, C. -T.
    Wen, C. -F.
    MISKOLC MATHEMATICAL NOTES, 2017, 18 (02) : 665 - 683
  • [7] Slopes, Error Bounds and Weak Sharp Pareto Minima of a Vector-Valued Map
    Xuan Duc Ha Truong
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 176 (03) : 634 - 649
  • [8] ON ERROR BOUNDS AND MULTIPLIER METHODS FOR VARIATIONAL PROBLEMS IN BANACH SPACES
    Kanzow, Christian
    Steck, Daniel
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (03) : 1716 - 1738
  • [9] Sufficient Conditions for Error Bounds and Linear Regularity in Banach Spaces
    Wei, Zhou
    He, Qing Hai
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (03) : 423 - 436
  • [10] Sufficient conditions for error bounds and linear regularity in Banach spaces
    Zhou Wei
    Qing Hai He
    Acta Mathematica Sinica, English Series, 2014, 30 : 423 - 436