Some secondary metabolites of plants function as antimicrobial products against phytopathogens and constitute an increasingly important class of pesticides. In the present Study, the essential oil of Asarum heterotropoides var. mandshuricum was analyzed by GC/MS and its antimicrobial activity was evaluated against five phytopathogenic fungi. Major components of the oil were methyleugenol (59.42%), eucarvone (24.10%), 5-allyl-1,2,3-trmethoxybenzene (5.72%), and 3,7,7-trimethylbicyclo(4.1.0)hept-3-ene (4.93%). The essential oil and the most abundant component, methyleugenol, were separately assayed for inhibition of 5 pathogens: Alternaria humicola, Colletotrichum gloeosporoides, Rhizoctonia solani, Phytophthora cactorum and Fusarium solani. Both the oil and methyleugenol strongly inhibited the growth of the test pathogens (IC50 values <0.42 mu g ml(-1)) except F. solani, with the best activity against P. cactorum (IC50 values = 0.073 and 0.052 mu g ml(-1), respectively). It is concluded that the essential oil of A. heterotropoides var. mandshuricum has a broad antiphytopathogenic spectrum, and that methyleugenol is largely responsible for the bioactivity of the oil. The mode of action of methyleugenol against P cactorum is discussed based on changes in the mycelial ultrastructure. (C) 2009 Elsevier Ltd. All rights reserved.