The Klein bottle group is not strongly verbally closed, though awfully close to being so

被引:3
作者
Klyachko, Anton A. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, MSU, Fac Mech & Math, Moscow 119991, Russia
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2021年 / 64卷 / 02期
基金
俄罗斯基础研究基金会;
关键词
Verbally closed subgroups; surface groups;
D O I
10.4153/S0008439520000582
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
According to Mazhuga's theorem, the fundamental group H of any connected surface, possibly except for the Klein bottle, is a retract of each finitely generated group containing H as a verbally closed subgroup. We prove that the Klein bottle group is indeed an exception but has a very close property.
引用
收藏
页码:491 / 497
页数:7
相关论文
共 14 条
[1]   Algebraic geometry over groups I. Algebraic sets and ideal theory [J].
Baumslag, G ;
Myasnikov, A ;
Remeslennikov, V .
JOURNAL OF ALGEBRA, 1999, 219 (01) :16-79
[2]  
Bogopolski O., ARXIV180508071 ARXIV180508071
[3]  
Bogopolski O., ARXIV190310906 ARXIV190310906
[4]   Verbally closed virtually free subgroups [J].
Klyachko, Ant. A. ;
Mazhuga, A. M. .
SBORNIK MATHEMATICS, 2018, 209 (06) :850-856
[5]   Virtually free finite-normal-subgroup-free groups are strongly verbally closed [J].
Klyachko, Anton A. ;
Mazhuga, Andrey M. ;
Miroshnichenko, Veronika Yu .
JOURNAL OF ALGEBRA, 2018, 510 :319-330
[6]   On certain C-test words for free groups [J].
Lee, D .
JOURNAL OF ALGEBRA, 2002, 247 (02) :509-540
[7]   Free products of groups are strongly verbally closed [J].
Mazhuga, A. M. .
SBORNIK MATHEMATICS, 2019, 210 (10) :1456-1492
[8]   Strongly verbally closed groups [J].
Mazhuga, Andrey M. .
JOURNAL OF ALGEBRA, 2018, 493 :171-184
[9]   On free decompositions of verbally closed subgroups in free products of finite groups [J].
Mazhuga, Andrey M. .
JOURNAL OF GROUP THEORY, 2017, 20 (05) :971-986
[10]   Verbally closed subgroups of free groups [J].
Myasnikov, Alexei G. ;
Roman'kov, Vitaly .
JOURNAL OF GROUP THEORY, 2014, 17 (01) :29-40