Deep Learning Enabled Beam Tracking for Non-Line of Sight Millimeter Wave Communications

被引:12
作者
Wang, Ruiyu [1 ]
Klaine, Paulo Valente [1 ]
Onireti, Oluwakayode [1 ]
Sun, Yao [1 ]
Imran, Muhammad Ali [1 ]
Zhang, Lei [1 ]
机构
[1] Univ Glasgow, Sch Engn, Glasgow G12 8QQ, Lanark, Scotland
来源
IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY | 2021年 / 2卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
Trajectory; Neural networks; Training; Predictive models; Millimeter wave communication; Mathematical model; Array signal processing; Deep learning; mmWave; NLOS; trajectory prediction; estimation; NLOS IDENTIFICATION; NEURAL-NETWORKS; DESIGN; TECHNOLOGY;
D O I
10.1109/OJCOMS.2021.3096118
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To solve the complex beam alignment issue in non-line-of-sight (NLOS) millimeter wave communications, this paper presents a deep neural network (DNN) based procedure to predict the angle of arrival (AOA) and angle of departure (AOD) both in terms of azimuth and elevation, i.e., AAOA/AAOD and EAOA/EAOD. In order to evaluate the performance of the proposed procedure under practical assumptions, we employ a trajectory prediction method by considering dynamic window approach (DWA) to estimate the location information of the user equipment (UE), which is utilized as the input parameter of the trained DNN to generate the prediction of AAOA/AAOD and EAOA/EAOD. The robustness of the prediction procedure is analyzed in the presence of prediction errors, which proves that the proposed DNN is a promising tool to predict AOA and AOD in NLOS scenarios based on the estimated UE location. Simulation results shows that the prediction errors of the AOA and AOD can be maintained within an acceptable range of +/- 2 degrees.
引用
收藏
页码:1710 / 1720
页数:11
相关论文
共 40 条
[1]   Millimeter Wave Communications: From Point-to-Point Links to Agile Network Connections [J].
Abari, Omid ;
Hassanieh, Haitham ;
Rodreguez, Michael ;
Katabi, Dina .
PROCEEDINGS OF THE 15TH ACM WORKSHOP ON HOT TOPICS IN NETWORKS (HOTNETS '16), 2016, :169-175
[2]  
Alrabeiah M., 2019, ARXIV191002900
[3]  
[Anonymous], 2017, ARXIV171207143
[4]   Position-Aided mm-Wave Beam Training Under NLOS Conditions [J].
Aviles, Juan C. ;
Kouki, Ammar .
IEEE ACCESS, 2016, 4 :8703-8714
[5]   Predicting Wireless MmWave Massive MIMO Channel Characteristics Using Machine Learning Algorithms [J].
Bai, Lu ;
Wang, Cheng-Xiang ;
Huang, Jie ;
Xu, Qian ;
Yang, Yuqian ;
Goussetis, George ;
Sun, Jian ;
Zhang, Wensheng .
WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2018,
[6]   Design and Implementation of Cloud Analytics-Assisted Smart Power Meters Considering Advanced Artificial Intelligence as Edge Analytics in Demand-Side Management for Smart Homes [J].
Chen, Yung-Yao ;
Lin, Yu-Hsiu ;
Kung, Chia-Ching ;
Chung, Ming-Han ;
Yen, I-Hsuan .
SENSORS, 2019, 19 (09)
[7]   Deep Learning Based NLOS Identification With Commodity WLAN Devices [J].
Choi, Jeong-Sik ;
Lee, Woong-Hee ;
Lee, Jae-Hyun ;
Lee, Jong-Ho ;
Kim, Seong-Cheol .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (04) :3295-3303
[8]  
Culurciello E., 2016, ENET DEEP NEURAL NET
[9]  
Das, 2018, ARXIV181205519, DOI DOI 10.48550/ARXIV.1812.05519
[10]   Trends and Challenges in Wireless Channel Modeling for Evolving Radio Access [J].
Ferrand, Paul ;
Amara, Mustapha ;
Valentin, Stefan ;
Guillaud, Maxime .
IEEE COMMUNICATIONS MAGAZINE, 2016, 54 (07) :93-99