The Korteweg-de Vries-Kawahara equation in a bounded domain and some numerical results

被引:43
作者
Ceballos, Juan Carlos
Sepulveda, Mauricio
Villagran, Octavio Paulo Vera
机构
[1] Univ Concepcion, Fac Ciencias Fis & Matemat, Dept Ingn Matemat, Concepcion, Chile
[2] Univ Bio Bio, Dept Matemat, Concepcion, Chile
关键词
evolution equations; gain in regularity; Sobolev space; numerical methods;
D O I
10.1016/j.amc.2007.01.107
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with the initial-boundary problem associated to the Korteweg-de Vries-Kawahara perturbed by a dispersive term which appears in several fluids dynamics problems. We obtain local smoothing effects that are uniform with respect to the size of the interval. We also propose a simple finite different scheme for the problem and prove its unconditional stability. Finally we give some numerical examples. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:912 / 936
页数:25
相关论文
共 24 条
[1]   LONG WAVES ON LIQUID FILMS [J].
BENNEY, DJ .
JOURNAL OF MATHEMATICS AND PHYSICS, 1966, 45 (02) :150-&
[2]   On the Benney-Lin and Kawahara equations [J].
Biagioni, HA ;
Linares, F .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 211 (01) :131-152
[3]   THE KORTEWEG-DEVRIES EQUATION, POSED IN A QUARTER-PLANE [J].
BONA, J ;
WINTHER, R .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1983, 14 (06) :1056-1106
[4]  
Bona J. L., 1989, DIFFER INTEGRAL EQU, V2, P228
[5]  
BONA JL, 1973, P CAMB PHILOS SOC, V73, P391
[6]   AN EVALUATION OF A MODEL EQUATION FOR WATER-WAVES [J].
BONA, JL ;
PRITCHARD, WG ;
SCOTT, LR .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1981, 302 (1471) :457-510
[7]  
BONA JL, 1996, ADV DIFFERENTIAL EQU, V1, P1
[8]  
Bona JL., 1999, Contemp. Math, V221, P59, DOI DOI 10.1090/CONM/221/03118
[9]   An initial-boundary-value problem that approximate the quarter-plane problem for the Korteweg-de Vries equation [J].
Colin, T ;
Gisclon, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 46 (06) :869-892
[10]   ATTRACTORS AND TRANSIENTS FOR A PERTURBED PERIODIC KDV EQUATION - A NONLINEAR SPECTRAL-ANALYSIS [J].
ERCOLANI, NM ;
MCLAUGHLIN, DW ;
ROITNER, H .
JOURNAL OF NONLINEAR SCIENCE, 1993, 3 (04) :477-539