Heat kernel on smooth metric measure spaces and applications

被引:19
|
作者
Wu, Jia-Yong [1 ]
Wu, Peng [2 ]
机构
[1] Shanghai Maritime Univ, Dept Math, Haigang Ave 1550, Shanghai 201306, Peoples R China
[2] Cornell Univ, Dept Math, White Hall, Ithaca, NY 14853 USA
关键词
LIOUVILLE THEOREMS; RICCI; MANIFOLDS; OPERATORS; EIGENVALUE; UNIQUENESS; CURVATURE; LAPLACIAN; DIAMETER; GEOMETRY;
D O I
10.1007/s00208-015-1289-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive a Harnack inequality for positive solutions of the f-heat equation and Gaussian upper and lower bound estimates for the f-heat kernel on complete smooth metric measure spaces with Bakry-A parts per thousand mery Ricci curvature bounded below. Both upper and lower bound estimates are sharp when the Bakry-A parts per thousand mery Ricci curvature is nonnegative. The main argument is the De Giorgi-Nash-Moser theory. As applications, we prove an -Liouville theorem for f-subharmonic functions and an -uniqueness theorem for f-heat equations when f has at most linear growth. We also obtain eigenvalues estimates and f-Green's function estimates for the f-Laplace operator.
引用
收藏
页码:309 / 344
页数:36
相关论文
共 50 条
  • [1] Heat kernel on smooth metric measure spaces with nonnegative curvature
    Wu, Jia-Yong
    Wu, Peng
    MATHEMATISCHE ANNALEN, 2015, 362 (3-4) : 717 - 742
  • [2] Locality of the Heat Kernel on Metric Measure Spaces
    Post, Olaf
    Rueckriemen, Ralf
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2018, 12 (03) : 729 - 766
  • [3] Heat Kernel Bounds on Metric Measure Spaces and Some Applications
    Jiang, Renjin
    Li, Huaiqian
    Zhang, Huichun
    POTENTIAL ANALYSIS, 2016, 44 (03) : 601 - 627
  • [4] RIGIDITY OF CLOSED METRIC MEASURE SPACES WITH NONNEGATIVE CURVATURE
    Wu, Jia-Yong
    KODAI MATHEMATICAL JOURNAL, 2016, 39 (03) : 489 - 499
  • [5] EIGENVALUES OF THE DRIFTING LAPLACIAN ON SMOOTH METRIC MEASURE SPACES
    Zeng, Lingzhong
    Sun, He-Jun
    PACIFIC JOURNAL OF MATHEMATICS, 2022, 319 (02) : 439 - 470
  • [6] LP-Liouville theorems on complete smooth metric measure spaces
    Wu, Jia-Yong
    BULLETIN DES SCIENCES MATHEMATIQUES, 2014, 138 (04): : 510 - 539
  • [7] Smooth metric measure spaces, quasi-Einstein metrics, and tractors
    Case, Jeffrey S.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2012, 10 (05): : 1733 - 1762
  • [8] Rigidity of weighted Einstein smooth metric measure spaces
    Brozos-Vazquez, Miguel
    Mojon-Alvarez, Diego
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 181 : 91 - 112
  • [9] GAP THEOREMS FOR ENDS OF SMOOTH METRIC MEASURE SPACES
    Hua, Bobo
    Wu, Jia-Yong
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (11) : 4947 - 4957
  • [10] HARDY SPACES ON METRIC MEASURE SPACES WITH GENERALIZED SUB-GAUSSIAN HEAT KERNEL ESTIMATES
    Chen, Li
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 104 (02) : 162 - 194